L

w

- b w -

-

~—

Instruction Set

6.3 Data processing

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 00 OpCode |S Rn Rd Operand 2

L | | LR I . I N

l

Destinatlon register
1st operand register

Set condition codes
0 = do not alter condition codes
1 = sat condition codes

Operation Code

0000 = AND - Rd:= Op1 AND Op2
0001 = EOR - Rd:= Op1 EOR Op2
0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1 '
0100 = ADD - Rd:= Op1 + Op2

0101 =« ADC - Rd= Op1 + Op2 + C

0110 = SBC - Rd:= Op1-0Op2 + C

0111 = RSC - Rdi= Op2 - Op1 + C

1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORA - Rd:= Op1 OR Op2

1101 = MOV - Rd:= Op2

1110 = BIC - Rd:= Op1 AND NOT Op2

1111 = MVN - Rd:= NOT Op2

B

ImmedIate Operand

" 0 = operand 2 is a register 43 0

Shift Rm =]

L | W |

2nd operand register

shift applied to Rm

1 = operand 2 Is an immediate value
3

11 7 0

Rotate Imm [

[J | |

|
Unsigned 8 bit immediate value

shift applied to Imm

Condition field

sea section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

The instruction produces a result by performing a specified arithmetic or logical operation on one or twoO
operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm)
or a rotated 8 bit immediate value (Imm) according to the value of the I bit in the instruction. The
condition codes in the PSR may be preserved or updated as a result of this instruction, according to the
value of the S bit in the instruction. Certain operations (T ST, TEQ, CMP, CMN) do not write the result to
Rd. They are used only to perform tests and to set the condition codes on the result, and therefore should
always have the S bit set. (The assembler treats TST, TEQ, CMP and CMN as TSTS, TEQS, CMPS and
CMNS by default.)

ARM Datasheet 17

TSIV Y SNTTTNTY —'\"":‘-\.-‘:u‘f;“‘"."'!"“‘:f{w:*}?-ﬂvﬂrm"g{" T Epl i n
... ; Al B -t
R Y

Chapter 6

6.3.1 Operations

The operations supported are:

Assembler
Mnemonic OpCode Action
AND 0000 Bit-wise logical AND of operands
EOR 0001 Bit-wise logical EOR of operands
SUB 0010 Subtract operand 2 from operand 1
RSB 0011 Subtract operand 1 from operand 2
ADD 0100 Add operands
ADC 0101 Add operands plus carry (PSR C flaqg)
SBC 0110 Subtract operand 2 from operand 1 plus carry
RSC 0111 Subtract operand 1 from operand 2 plus carry
TST 1000 as AND, but result is not written
TEQ 1001 as EOR, but result is not written
CMP 1010 as SUB, but result is not written
CMN 1011 as ADD, but result is not written
ORR 1100 Bit-wise logical OR of operands
MoV 1101 Move operand 2 (operand 1 is ignored)
BIC- 1110 Bit clear (bit-wise logical AND of operand 1
and NOT operand 2)
MVN 1111 Move NOT operand 2 (operand 1 is ignored)

6.3.2 PSR flags

The operations may be classified as logical or arithmetic. The logical operations (AND, EOR, TST, TEQ,
ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand or operands to
produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the PSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeroes, and the N flag will be set
to the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat cach operand as a 32 bit
integer (cither unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not
R15) the V flag in the PSR will be sct if an overflow occurs into bit 31 of the result; this may be ignored
if the operands were considered unsigned, but wams of a possible error if the operands were 2s
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if
and only if the result was zero, and the N flag will be set to the valuc of bit 31 of the result (indicating a
negative result if the operands are considered to be 2’s complement signed).

6.3.3 Shifts

When the sccond operand is specified to be a shifted register, the operation of the barrel shifter is
controlled by the Shift field in the instruction. This field indicates the type of shift to be performed (logical
left or right, arithmetic right or rotate right). The amount by which the register should be shifted may be
contained in an immediate ficld in the instruction, or in the bottom byte of another register:

Il 76 5 4 11 8 7 6 5 4
0 Rs 0 1
Shift type Shift type
00 « logical left 00 = logical laft
01 = logical right 01 = logical right
10 = arithmetic right 10 = arithmetic right
11 = rotate right 11 = rotate nght
Shift amount ———— Shift register
5 bit unsigned integer Shift amaunt speatfied in
bottom byte of Rs
18 ARM Datasheet

PR N ! \'j_'f_-l * Y et (T A4

- | |

[}

((LA

® ® ®m ®

ki

® ®

nEpE @D E®®E

é.
()

U]

‘3

-« @ W ¥ o

~—

. & w ¥ J

- ———

Instruction Set

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any
value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified
amount to a more significant position. The least significant bits of the result are filled with zeroes, and the
high bits of Rm which do not map into the result are discarded, except that the least significant discarded
bit becomed the shifter carry output which may be latched into the C bit of the PSR when the ALU
operation is in the logical class (see above). For example, the effect of LSL #5 is:

31 27 26 0

carw/

contents of Rm

value of operand 2 0 00O0OC

Note that LSL #0 is a special case, where the shifter carry out is the old value of the PSR C flag. The
contents of Rm are used dircctly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant positions in the
result. LSR #5 has this effect:
31 5 4 0

contants of Rm

\mout

0 00O0O0 value of operand 2

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32,
which has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is
the same as logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into
LSL #0, and allow LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit
11 of Rm instead of zeroes. This preserves the sign in 2's complement notation. For example, ASR #5:

31 30 5 4 0

carry out

contents of Rm

value of operand 2

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of
Rm is again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is
therefore all ones or all zeroes, according to the value of bit 31 of Rm.

ARM Datasheet 19

T T T T T T Y Y R T T T T T T T L Y T e R T T A L Y e s T B T TR T TR TS

T ia

Chapter 6

Rotate right (ROR) operations rcuse the bits which overshoot” in a logical shilt right operation by
reintroducing them at the high end of the result, in place of the zeroes used to fill the high end in logical
right operations. For example, ROR #5:

31 5 4 0

contents of Rm

carry out

value of operand 2

The form of the shift ficld which might be expected to give ROR #0 is used to encode a special function
of the barrel shifter, rotte right extended (RRX). This is a rotate right by one bit position of the 33 bit
quantity formed by appending the PSR C flag to the most significant end of the contents of Rm:

31 1 0

contents of Rm

C carry
in \ out

value of operand 2

Register specified shift amount
Only the lcast significant byte of the contents of Rs is used to determine the shift amount.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of
the PSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction
specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shifting processes
described above:

E

LSL by 32 has result zero, carry out equal to bit 0 of Rm.

* LSL by more than 32 has result zero, carry out zero.

* LSR by 32 has result zero, carry out equal to bit 31 of Rm.

LSR by more than 32 has result zero, carry out zero.

ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.
ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32;
- therefore repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit
will cause the instruction to be a multiply or an undefined instruction.

20 ARM Datasheet

= . o ¥ A .) Jiy e

ok

NP T EP Bk achs 1 v M 10 LA i g PP e S i A 6 1
T R T R Lo « RTas ‘" i

prs

() A\

(B l\l nm B "

LY

®® ®

m ®m ®d» ®H B ®

G
WO DU N DY I L PPN B SRR N R R NN N SRR P -

m m

v

J/ s

J

=

@ w W W J @ w e W

Instruction Set

6.3.4 Immediate operand rotates

The immediate operand rotate ficld is a 4 bit unsigned integer which specifics a shift operation on the 8 bit
immediate value. The immediate value is zero extended to 32 bits, and then subject to a rotate right by
twice the value in the rotate field. This enables many common constants to be gencrated, for example all
powers of 2. Another example is that the 8 bit constant may be aligned with the PSR flags (bits 0, 1, and
26 to 31). All the flags can thereby be initialised in one TEQP instruction (sce section 6.2.5).

6.3.5 Writing to R15

When Rd is a register other than R15, the condition code flags in the PSR may be updated from the ALU
flags as described above. When Rd is R15 and the S flag in the instruction is set, the PSR is overwritten
by the corresponding bits in the ALU result, so bit 31 of the result goes to the N flag, bit 30 to the Z flag,
bit 29 to the C flag and bit 28 to the V flag. In user mode the other flags (I, F, M1, MQ) are protected
from direct change, but in non-user modes thesc will also be affected, accepting copies of bits 27, 26, 1
and 0 of the result respectively.

When one of these instructions is used to change the processor mode (which is only possible in a non-user
mode), the following instruction should not access a banked register (R8-R14) during its first cycle. A no-
op should be inserted if the next instruction must access a banked register. Accesses to the unbanked
registers (RO-R7 and R15) are safe.

If the S flag is clear when Rd is R15, only the 24 PC bits of R15 will be written. Conversely, if the
instruction is of a type which does not normally produce a result (CMP, CMN, TST, TEQ) but Rd is RIS
and the S bit is set, the result will be uscd in this case to update those PSR flags which are not protected
by virtue of the processor mode.

6.3.6 Using R15 as an operand

If R15 is used as an operand in a data processing instruction it can present different values depending on
which operand position it occupies. It will always cortain the value of the PC. It may or may not contain
the values of the PSR flags as they were at the completion of the previous instruction.

When R15 appears in the Rm position it will give the value of the PC together with the PSR flags to the
barrel shifter.

When R15 appears in either of the Rn or Rs positions it will give the value of the PC alone, with the PSR
bits replaced by zeroes.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the
shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the
shift amount, the PC will be 8 bytes ahead when used as Rs, and 12 bytes ahead when used as Rn or Rm.

6.3.7 Assembler syntax
* MOV MVN - single operand instructions
<opcode>{cond}{S} Rd,<Op2>
* CMP,CMN,TEQ,TST - instructions which do not produce a result.
<opcode>{cond}{P} Rn ,<0p2>
* AND,EOR,SUB,RSB,ADD,ADC,SBCRSC,ORR,BIC
<opcode>{cond}{S} Rd,Rn,<Op2>
where <Op2> is Rm{,<shift>} or ,<#expression>

(cond) - two-character condition mnemonic, see section 6.1.

ARM Datasheet 21

;.. lfl—..-','.t‘ '\1-__-"4._0;_‘ 5 ,‘ﬁ,: I‘T!'.r._ﬁg ¥ 3

Chapter 6

(S} - sct condition codes il S present (implied for CMP, CMN, TEQ, TST).

(P} - make Rd = R15 in instructions where Rd is not specificd, otherwisec Rd will default to RO. (Used for
changing the PSR dircctly from the ALU result.)

Rd, Rn and Rm are expressions evaluating to a register number,

Il <#cxpression> is used, the assembler will attempt to generate a shifted immediate 8-bit ficld to match the
expression. If this is impossible, it will give an error.

T mnm

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right onc bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR.

M

(ASL is a synonym for LSL, the two assemble to the same code.)

6.3.8 Examples

ADDEQ R2,R4,R5 ; 1f the Z flag is set make R2:=R4+R5

® ™

TEQS R4, #3 ; test R4 for equality with 3
; (the S is in fact redundant as the
assembler inserts i1t automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in
; the bottom byte of R2, subtract the result
; from R5, and put the answer into R4

® ®

-F'-"—!

; assume non-user mode here

TEQP R15,4#0 ; Change to user mode and clear N,Z,C,V,I,F
; NB R15 1s here in the Rn peosition, so it
; comes without the PSR flags

m @™

MOVNV RO, RO ; no-op to avoid mode change hazard i
MOV PC,R14 ; return from subroutine (R14 is a banked register)
MOVS PC,R14 ; return from subroutine and restore the PSR ii;-'
€:
.
@
-
; ¥
,:.
&=
.
22 ARM Datasheet =

m

T S R R T e T T R T
S i T CRC R | T T

‘.;w!'—-\» 5.\.1.-;11-

'
“k

Y

Instruction Set

6.4 Multiply and multiply-accumulate (MUL, MLA)

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

- Cond 000000 AlS Rd Rn Rs 1001 Rm

= l J 1 || 1 |_r_|
[f
Operand registers

Destination register

Set condition codes
0 = do not alter condition codes
1 = set condition codes

Accumulate bit
0 = multiply
1 = multiply and accumulate

Condition field

see section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to perform integer
multiplication. They give the lcast significant 32 bits of the product of two 32 bit operands, and may be
used 1o synthesize higher precision multiplications.

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for
compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD instruction in some
circumstances.

Both forms of the instruction work on operands which may be considered as signed (2's complement) or
unsigned integers.

6.4.1 Operand restrictions

Due to the way the Booth’s algorithm has been implemented, certain combinations of operand registers
should be avoided. (The assembler will issue a warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand register, as Rd is used 10 hold
intermediate values and Rm is used repeatedly during the multiply. A MUL will give a zero result if
Rm=Rd, and a MLA will give a meaningless result.

The destination register (Rd) should also not be R15. R15 is protected from modification by these
instructions, so the instruction will have no effect, except that it will put meaningless values in the PSR
flags if the S bit is set.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register
when required.

6.4.2 PSR flags

Setting the PSR flags is optional, and is controlled by the S bit in the instruction. The N and Z flags are
set correctly on the result (N is equal to bit 31 of the result, Z is set if and only if the result is zero), the A%
flag is unaffected by the instruction (as for logical data processing instructions), and the C flag is set to a
meaningless value.

ARM Datasheet 23

Chapter 6

6.4.3 Writing to R15

n B ®m M

As mentioned above, R15 must not be used as the destination register (Rd). If it is so used, the instruction
will have no cffect except possibly to scramble the PSR flags.

6.4.4 Using R15 as an operand

L)

R15 may be uscd as one or more of the operands, though the result will rarcly be uscful. When used as Rs
the PC bits will be used without the PSR flags, and the PC value will be 8 bytes on from the address of
the multiply instruction. When used as Rn, the PC bits will be used along with the PSR flags, and the PC
will again be 8 bits on from the address of the instruction. When used as Rm, the PC bits will be used
together with the PSR flags, but the PC will be the address of the instruction plus 12 bytes in this case.

'l‘\l

/

m_

6.4.5 Assembler syntax
MUL{cond}{S} Rd,Rm,Rs
MLA {cond}{S} Rd,Rm,Rs,Rn

(cond]} - two-character condition mnemonic, see section 6.1.
(S} - sct condition codcs if S present.
Rd, Rm, Rs and Rn are expressions evaluating to a register number.

(Rd must not be R15 and must not be the same as Rm.)

»® @

6.4.6 Examples

®

- PEDEEN N PR PN PUSEEE W ey

MUL R1,R2,R3 - ; R1l:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditiocnally R1:=R2*R3+R4,
; setting condition codes

™

The multiply instruction may be used to synthesize higher precision multiplications, for instance to multiply
two 32 bit integers and generate a 64 bit result:

*

mul 64

MOV al,A,LSR #16 ; al:= top half of A

MOV D,B,LSR #16 ; D := top half of B B
BIC A,A,al,LSL %16 ; A := bottom half of A 6: .
BIC B,B,D,LSL #16 ; B := bottom half of B

MUL C,A,B ; low section of result

MUL B,al,B ;) middle sections @ E
MUL A,D,A :) of result

MUL D,al,D ; high section of result I
ADDS A,B,A ; add middle sections =

H (couldn’t use MLA as we need C correct) -

ADDCS D, D, #&£10000 ; carry from above add l
ADDS C,C,A,LSL #16 ; C is now bottom 32 bits of product _
ADC D,D,A,LSR #16 ; D is top 32 bits 6_-

|
\
R

(A, B are registers containing the 32 bit integers; C, D are registers for the 64 bit result: al is a temporary
rcgister. A and B are overwritten during the multiply)

)

m
W -

24 ARM Datasheet

@

Rt AN Y, e g e C vy o Z - T - - . - E Naam o 3 o
B M R et A BHICA TR S DU b S5 g pevee g Do g PR A T ARSI FIE o 11
z e P e e epe Tl TR 0 ".f’-__.r\?':',"\\‘-"'lt‘-q Fohdn ER e Fe e Ll \. B '

- ‘B

€@ W w w

-

a B I o

€

Instruction Set

6.5 Single data transfer (LDR, STR)

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond o1 |1|PlulB|W]L Rn Rd Offset

I [1 | 1 |

L [
Source/Destination register

Base register

Load/Store bit

0 = Store to memory
1 = Load lrom memary

Write-back bit
0 = no write-back
1 = write address into base

Byte/Word bit

0 = transfer word quantity
1 = transler byte quantity

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset 0 base

Pre/Post indexing bit
0 = post; add offsel after transfer
1 = pre; add offsel belors transfer

Immediate offset

I 0 = offset is an immediate value 0

Immediate offset

[: |
Unsigned 12 bit immediate offset
1 1 = offset is a register 43 0
Shift Rm
L] 1 |

|
) | Offset register
shift applied to Rm
Condition field

see section 6.1

The instruction is only exccuted if the condition is true. The various conditions are defined in section 6.1

The single data transfer instructions are used to load or store single bytes or words of data. The memory
address used in the transfer is calulated by adding an offset to or subtracting an offset from a base register.
The result of this calculation may be written back into the base register if ‘auto-indexing’ is required.

6.5.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a
second register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after
(post-indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may be
writter; back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed

ARM Datasheet 25

® ® @

Chapter 6 6

addressing, the write back bit is redundant, since the old base value can be retained by setting the offset to

zero. Therclore post-indexed data transfers always write back the modified basc. The only use of the W bit s
in a post-indexed data transfer is in non-user mode code, where setting the W bit forces the TRANS pin €

to go LOW for the transfer, allowing the operating system to gencrate a user address in a system where the
memory management hardware makes suitable use of this pin.

®

6.5.2 Shifted register offset

")

The 8 shift control bits arc described in the data processing instructions (scction 6.2.3), but the register
specificd shift amounts are not available in this instruction class

(

6.5.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM register and
memory.

| (M

A byle load (LDRB) expects the data on bits 0 to 7 if the supplicd address is on a word boundary, on bits
8 to 15 if it is a word address plus one byte, and so on. The selected byte is placed in the bottom 8 bits of
the destination register, and the remaining bits of the register are filled with zeroes.

4 2

A byte store (STRB) repeats the bottom 8 bits of the source register four times across the data bus. The
cxternal memory system should activate the appropriate byte subsystem to store the data (sce chapter 7).

A word load (LDR) should generate a word aligned address. An address offset from a word boundary will
causc the data to be rotated into the register so that the addressed byte occupies bits 0 to 7. External

hardware could perform a double access to memory (o allow non-aligned word loads, but existing systems
do not support this.

o

n ®
"lui-'-;

A word store (STR) should generate a word aligned address. The data presented to the data bus are not
alfected if the address is not word aligned, so if support werc required for non-aligned stores cxternal
hardware would have to switch bytes around on the bus.

6.5.4 Use of R15

These instructions will never cause the PSR to be modificd, even when Rd or Rn is R15.

m M
W — -

If R15 is specified as the base register (Rn), the PC is used without the PSR flags. When using the PC as

the base register one must remember that it contains an address 8 bytes on from the address of the current
instruction.

IE R15 is specified as the register offsct (Rm), the valuc presented will be the PC together with the PSR.

m

When R15 is the source register (Rd) of a register store (STR) instruction, the value stored will be the PC
together with the PSR. The stored value of the PC will be 12 bytes on from the address of the instruction,
A load register (LDR) with R15 as Rd will change only the PC, and the PSR will be unchanged.

m

6.5.5 Address exceptions

If the address used for the transfer (ic the unmodified contents of the base register for post-indexed
addressing, or the base modified by the offset for pre-indexed addressing) has a logic one in any of the bits
26 to 31, the transfer will not take place and the address exception trap will be taken.

(!|
W

\

™
1

Note that it is only the address actually used for the transfer which is checked. A base containing an
address outside the legal range may be used in a pre-indexed transfer if the offset brings the address within
the legal range, and likewise a base within (he legal range may be modified by post-indexing to outside the
legal range without causing an address exception.

3

m

26 ARM Datasheet

NOIUT TR CNTTEL AN NI N v e rmsmony TN P TR Y e e e ey TTETTSNITNINT L [v n e e i e e o,
L % . > Y et ey - > AT . 0] 2
. ¢ L B Tt g e e Y e E e - i B Vst TR T .

L

@e W W S ¢© ‘'

-

Instruction Set

6.5.6 Data Aborts

A transfer to or from a legal address may still cause problems for a memory management system. For
instance, in a system which uses virtual memory the required data may be absent from main memory. The
memory manager can signal a problem by taking the processor ABORT pin HIGH, whercupon the data
transfer instruction will be prevented from changing the processor state and the Data Abort trap will be
taken. It is up to the system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

6.5.7 Assembler syntax
<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR - load from mecmory into a register.

STR - store from a register into memory.

{cond} - two-character condition mnemonic, see section 6.1.
{B) - if B is present then byte transfer, otherwise word transfer.

(T} - if T is present the W bit will be set in a post-indexed instruction, causing the TRANS pin to go
LOW for the transfer cycle. T is not allowed when a pre-indexed addressing mode is specified or implied.

Rd is an expression cvaluating to a valid register number.
<Address> can be:
* An expression which generates an address:
<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

* A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#texpression>]{'} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>.
* A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a valid register number. NOTE if Rn is R15 then the assembler
will subtract 8 from the offset value to allow for ARM pipelining.

<shift> is a general shift operation (see section on data processing instructions) but note that the shift
amount may not be specified by a register.

(') write back the base register (set the W bit) if ! is present.

ARM Datasheet 27

|

Chapter 6

AL AL A

6.5.8 Examples

STR R1, [BASE, INDEX]!

m

; store Rl at BASE+INDEX (both of which are
; registers) and write back address to BASE

STR R1, [BASE], INDEX ; store Rl at BASE and writeback
; BASE+INDEX to BASE

LDR R1, [BASE, #16] ; load Rl from contents of BASE+16.

; Don’'t write back

o ™

LDR R1, [BASE, INDEX,LSL #2] ; load Rl from contents of

; BASE+INDEX*4

(W)

LDREQB R1, [BASE, #5] ; conditionally load byte at BASE+5 into

; Rl bits 0 to 7, filling bits 8 to 31 with zeroes

)

STR R1,PLACE ; generate PC relative offset to address PLACE

PLACE

m ® ®

il

:—‘|

iy

m ®

Lt el

m o
R ——

m

28 ARM Datasheet

C_I\

B N Sk A e
N e W O S EELEN

o wn o -

e

Instruction Set

6.6 Block data transfer (LDM, STM)

31 28 27 25 24 23 22 21 20 19 16 15 0

Cond 100 |PjU|S|W]L Rn Register list

T N

Base register
Load/Store bit

0 = Store 10 memaory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

PSR & force user bit

0 = do not load PSR or lorce usar mode
1 = load PSR or lorce user mode

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset 10 base

Pre/Post Indexing bit
0 = post; add offsel after transler
1 = pre; add offset belore translar

Condition field

sea section 6.1

The instruction is only executed if the condition is true. The various conditions are defined in scction 6.1.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or
down memory, and arc very cfficient instructions for saving or restoring context, or for moving large
blocks of data around main memory.

6.6.1 The register list

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs can
also transfer to and from the user bank, sce below). The register list is a 16 bit field in the instruction, with
each bit corresponding to a register. A 1 in bit O of the register field will cause RO to be transferred, a 0
will causc it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

6.6.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the
up/down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest memory address. By
way of illustration, consider the transfer of R1, RS and R7 in the case where Rn=1000H and write back of
the modified base is required (W=1). The following figures show the sequence of register transfers, the
addresses used, and the value of Rn after the instruction has completed.

(In all cases, had write back of the modified base not been required (W=0), Rn would have retained its
initial value of 1000H unless it was also in the transfer list of a load multiple register instruction, when it
would have been overwritten with the loaded value.)

ARM Datasheet 20

Chapter 6

Post-increment addressing

Rn—>

(1)

R5

R1

(3

Pre-increment addressing

Rn—>

(1

R5
R1

3

30

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

R1

(2)

Rn—>

R7

R5

R1

(4)

R1

(2)

Rn— | - R7

RS

R1

(4)

ARM Datasheet

T T T T T R TR AN S T R R TR R R TIR T

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

LI L L

n ®

®™ ®m ® m
v | Vo p

(!ru 4) Q!) (FD (!;

3

{

1 O |

!

m M

m

-

—

N ZEEY ¥

.‘J

J) ua

4/

'y

Post-decrement addressing

Rn—>

)]

R5

R1

(3)

Pre-decrement addressing

Rn—>

(1)

R5

R1

(3)

100CH

1000H

0FF4H

100CH

1000H

0FF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

ARM Datasheet

Rn—>

Rn—>

R1

(2

R7

R5

R1

(4

R1

(2

R7

RS

R1

(4)

Instruction Set

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

100CH

1000H

OFF4H

3

Chapter 6

6.6.3 Transfer of R15

Whenever R15 is stored to memory, the value transferred is the PC together with the PSR flags. The stored
value of the PC will be 12 bytes on from the address of the STM instruction.

If R15 is in the transfer list of a load multiple (LDM) instruction the PC is overwritten, and the cffect on
the PSR is controlled by the S bit. If the S bit is 0 the PSR is preserved unchanged, but if the S bit is 1
the PSR will be overwritten by the corresponding bits of the loaded valuc. In user mode, however, the I, F,
MO and M1 bits are protected from change whatever the value of the S bit. The mode at the start of the
instruction determines whether these bits are protected, and the supervisor may return to the user program,
reenabling interrupts and restoring user mode with one LDM instruction.

6.6.4 Forcing transfer of the user bank

For STM instructions the S bit is redundant as the PSR is always stored with the PC whenever R15 is in
the transfer list. In user mode programs the S bit is ignored, but in other modes it has a second
interpretation. S=1 used to force transfers to take values from the user register bank instead of from the
current register bank. This is useful for saving the user state on process switches. Note that when it is so
used, write back of the base will also be to the user bank, though the base will be fetched from the current
bank. Therefore don’t use write back when forcing uscr bank.

In LDM instructions the S bit is redundant if R15 is not in the transfer list, and again in user modc
programs it is ignored in this case. In non-user mode programs where R15 is not in the transfer list, S=1 is
used to force loaded values to go to the user registers instead of the current register bank. When so used,
care must be taken not to rcad from a banked register during the following cycle - if in doubt insert a no-
op. Again don’t use write back when forcing user bank transfer.

6.6.5 Use of R15 as the base

When the base is the PC, the PSR bits will be used to form the address as well, so unless all interrupts are
enabled and all flags are zero an address exception will occur. Also, write back is never allowed when the
basc is the PC (sctting the W bit will have no effect).

6.6.6 Inclusion of the base in the register list

When writcback is specified, the base is written back at the end of the second cycle of the instruction.
During a STM, the first register is written out at the start of the sccond cycle. A STM which includes
storing the base, with the base as the first register to be stored, will therefore store the unchanged value,
whereas with the base second or later in the transfer order, will store the modified value. An LDM will
always overwrite the updated base if the basc is in the list.

6.6.7 Address exceptions

When the address of the first wransfer falls outside the legal address space (ic has a 1 somewhere in bits 26
to 31), an address exception trap will be taken. The instruction will first complete in the usual number of
cyles, though an STM will be prevented from writing to memory. The processor state will be the same as
if a data abort had occurred on the first transfer cycle (see next section).

Only the address of the first transfer is checked in this way; if subsequent addresses over- or under-flow
into illegal address space they will be truncated to 26 bits but will not cause an address exception trap.

6.6.8 Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the memory manager can
indicate a problem with an address by taking the ABORT pin HIGH. This can happen on any transfer
during a multiple register load or store, and must be recoverable if ARM is to be used in a virtual memory
system.

32 ARM Datasheet

LA

LI

("

()

i

m ®m @™

£ O YO TR TN THN TN TN NG N I Y
)) | A ! ;

m,

I A e L =
. ST R T R S BT B 06 P i P A g TSI I INC R ey L

-

e
¥
L

-

Instruction Set

Aborts during STM instructions

I[the abort occurs during a store multiple instruction, ARM takes litle action until the instruction
completes, whercupon it cnters the data abort trap. The memory manager is responsible for preventing
crroncous wrilcs to thc memory. The only change to the intemal state of the processor will be the
modification of the basc register if writc-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during L.DM instructions

When ARM detects a data abort during a load multiple instruction, it modifics the opecration of the
instruction to cnsure that recovery is possible.

* QOverwriting of registers stops when the abort happens. The aborting load will not take place, nor will
the preceding one, but registers two or more positions ahcad of the abort (if any) will be loaded.
(This guarantees that the PC will be preserved, since it is always the last register to be overwritten.)

The base register is restored, to its modified value if write-back was requested. This ensures
recoverability in the case where the base register is also in the transfer list, and may have been
overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any
base modification (and resolve the cause of the abort) before restarting the instruction.

6.6.9 Assembler syntax
<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{*}

{cond) - two character condition mnemonic, see section 6.1.
Rn is an expression evaluating to a valid register number.

<Rlist> can be either a list of registers and register ranges enclosed in (} (eg (ROR2-R7,R10}), or an
expression evaluating to the 16 bit opcrand.

(!} if present requests writc-back (W=1), otherwise W=0.

{A) if prescnt sct S bit to load the PSR with the PC, or force transfer of user bank when in non-user mode.

Addressing mode names

There are different assembler mnemonics for cach of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalences between the names and
the values of the bits in the instruction are:

name stack other L bit P bit U bit
pre-increment load LDMED LDMIB 1 1 1
post-increment load LDMFD LDMIA 1 0 1
pre—-decrement load LDMEA LDMDB b % 1 Q
post-decrement load LDMFA LDMDA 1 0 o]
pre-increment store STMFA STMIB 0 1 1
pcst-increment store STMEA STMIA 0 0 1
pre-decrement store STMFD STMDB 0 1 0
post—-decrement store STMED STMDA 0 0 0

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required.
The F and E refer to a "full” or "empty" stack, i.e. whether a pre-index has to be done (full) before storing
to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, a STM will

ARM Datasheet 33

()

Chapter 6

(B

go up and LDM down, if descending, vice-versa.

[A, 1B, DA, DB allow control when LDM/STM arc not being used for stacks and simply mecan Increment
After, Increment Before, Decrement After, Decrement Before.

m

6.6.10 Examples

f!i\

LDMFD SP!, [RO,R1,R2} ; unstack 3 registers -
STMIA BASE, (RO-R15} ; save all registers -
These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the ol

calling routine:

-

STMED SP!, {(RO-R3,R14} ; save RO to R3 to use as workspace
; and R1l4 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!, {RO-R3,R15}" ; restore workspace and return
; (also restoring PSR flags)

mom o

mme

@1(!\

W m— e ppTpEew— e r— e p— - =

)

|

b
- -

T

® m P

34 ARM Datasheet

LR __ TR B8 §]

1

LN R A T R T AT AT 3 N W iy
BRI R R RN N I R s Satnatids
- . S & T Yy e Ty P R S P

i

N ¥

Instruction Set

6.7 Software interrupt

31 28 27 24 23 0

Cond 1111 Comment field (ignored by ARM)

l Condition field

sea section 6.1

The instruction is only exccuted if the condition is true. The various conditions are defined in section 6.1.

The software interrupt instruction is used to enter supervisor mode in a controlled manner. The instruction
causes the software interrupt trap Lo be taken, which effects the mode change but forces the PC to a fixed
value (O8H). If this address is suitably protected (by external memory management hardware) from
modification by the user, a fully protected operating system may be constructed.

6.7.1 Return from the supervisor

The PC and PSR are saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to
point to the word after the SWI instruction. MOVS R15,R14_svc will rcturn to the user program, restore
the user PSR and return the processor o user mode.

Note that the link mechanism is not re-cntrant, SO if the supervisor code wishes to use software interrupts
within itself it must first save a copy of the rclum address.

6.7.2 Comment field

The bottom 24 bits of the instruction are ignored by ARM, and may be used to communicate information
to the supervisor code. For instance, the supervisor may look at this field and use it to index into an array
of entry points for routines which perform the various supervisor functions.

6.7.3 Assembler syntax

SWI{cond} <expression>

{cond) - two character condition mnemonic, see section 6.1,

<expression> is evaluated and placed in the comment field (which is ignored by ARM).

ARM Datasheet 35

-
n
n
- == = == - - -
i L - — = B =y 1
n
n

-:i'-!._n'-..:l S

""'J'-"I"li'-rl.:i:il.- I'-l.r.-'."'

. - .
*ﬁ: =--r'- uuﬂ 0

-
. .:.: L - - -
B '.. : . N N .I e - ‘I
Sl NN T .lr "-..-.:H. i "'.. .
- o ™1 = = N B
= . . . '-rl-Eifu A - .:ﬂ-%_-a g e -I . .:l_ .|i
_ . - - b el o= .
. - :"1|"'-"-_'_-" =y p " B l-'-l S L F NIl .
S . . '.' R L '
- - [I
I - = - -
= = #‘l“l-- L. .
=l lrerln. . PpAan - L 18 il -
= -|_-.J-I-r.|.|-|.||.-|.|-' o L - -'--n-ll.l: I'._'r:"ll.lﬂ

h -II *- L

-ulbll-'_'l-lJlt-.-.-. s r

s . i
Y L 3

e N e I L . [
A it S et alalh gop Bl g U,

SEEECErLTT & e b A = T = et = e e L

“m *
ey~

£ . =

Instruction Set

6.8 Co-Processor data operations

3 28 27 24 23 20 19 16 15 12 11 8 7 5 43 0

Cond 1110 CP Opc CRn CRd CP# cP |0 CRm

| L 1 1 I [A N E [I—

]

E Co-Processor operand register
Co-Processor information

L—— Co-Processor number

Co-Processor destination register

Co-Processor operand register

Co-Processor operation code

Condition field

see saction 6.1

The instruction is only executed if the condition is true. The various conditions are defined in section 6.1.

This class of instruction is used to tell a Co-Processor (o perform some internal operation. No result is
communicated back to ARM, and ARM will not wait for the operation to complete. The Co-Processor
could contain a queue of such instructions awaiting execution, and their execution can overlap other ARM
activity allowing the Co-Processor and ARM to perform independent tasks in parallel.

6.8.1 The Co-Processor fields

Only bit 4 and bits 24 t0 31 are significant to ARM; the remaining bits are used by Co-Processors. The
above ficld names arc used by convention, and particular Co-Processors may redefine the use of all fields
cxcept CP# as appropriate. The CP# field is uscd to contain an identifying number (in the range O to 15)

a _ for each Co-Processor, and a Co-Processor will ignore any instruction which does not contain its number in
the CP# field.

3 The conventional interpretation of the instruction is that the Co-Processor should perform an operation
specified in the CP Opc field (and possibly in the CP ficld) on the contents of CRn and CRm, and place
the result in CRd.

6.8.2 Assembler syntax

CDP{cond} CP#,<expressi0n1>,CRd,CRn,CRm{,<expre55i0n2>}

(cond} - two character condition mnemonic, see section 6.1.

CP# - the unique number of the required Co-Processor.

<expression1> - evaluated to a constant and placed in the CP Opc field.

) CRd, CRn and CRm are expressions evaluating to a valid Co-Processor register number.

<expression2> - where present is evaluated to a constant and placed in the CP field.

ARM Datasheet 37

ERACI e DS ‘;"""i""im;. f’

Chapter 6

6.8.3 Examples

cpbp 1,10,CR1,CR2,CR3 ; request Co-Proc 1 to do operation 10
on CR2 and CR3, and put the result in CR1

CDPEQ 2,5,CR1,CR2,CR3,2 ; if Z flag is set request Co-Proc 2 to do

; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1

5 momom.

\

{J!“\(!\(!\-i

AT

(5\

LY
- pe—

l‘= :

(t)

m m @

38 ARM Datasheet

’!“‘
r.

. W e -,
R TN PR s Vimded)

