l"

';‘

b

| 4

ARM Datasheet

Part No 1 85250 0360 0
Issue No 1.0
17 March 1987

© Copyright Acom Computers Limited 1987

Ncither the whole nor any part of the information contained in, or the product described in, this manual may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this manual is subject to continuous developments and improvements. All particulars of the
product and its use contained in this manual are given by Acomm Computers in good faith. However, all warranties

implied or expressed, including but not limited to implied warranties or merchantability or fitness for purpose, are
excluded.

This manual is intended only to assist the reader in the use of the product. Acom Computers shall not be liable for any
loss or damage arising from the use of any information in this manual, or any error or omission in such information, or
any incorrect use of the product.

ISBN 1 85250 026 3

Published by:
Acorn Computers Limited, Fulbourn Road, Cherry Hinton, Cambridge CB1 4JN, UK

i ARM Datasheet

hivd R e At i o e 0] 1.—‘.mrw“qﬂjrmﬂ"ﬁ‘7“'\"ﬂ;ﬁ“flwrﬂwmﬁ """'!('T"T ST L TRT RN TI T - o 2408 S, B S
o - R S . g e v oy H < 5 3

N aia— ety LS

w

)

—

[X
)

LY

L)

@@ @D EE®OE®D B

@@ @ @
W e U e — R ——

(a

@

Contents

1. Introduction
) 2. Block Diagram
3. Functional Diagram
4. Descripuon of Signals
5. Programmers’ Model
5.1 Introduction

O O ~1 o~]~ B L RO —

5.2 Registers
5.3 Exceptions
5.3.1 FIQ
5 53.2 IRQ
= 5.3.3 Address exception trap 10
5.3.4 Abort 10 :
wj 5.3.5 Software interrupt 11 f
= 5.3.6 Undefined instruction trap 11 {
5.3.7 Reset 12
| 5.3.8 Vector Summary 12
5.3.9 Exception Priorities 12
5.3.10 Intcrrupt Latencies 13
6. Instruction Set 14
6.1 The condition field ; 14
6.2 Branch and branch with link (B, BL) 15
6.2.1 The link bit 15
6.2.2 Assembler syntax 15
6.2.3 Examples 16
= 6.3 Data processing 17
6.3.1 Operations 18
5 6.3.2 PSR flags 18
6.3.3 Shifts 18
Instruction specified shift amount 19
Register specified shilt amount 20
» 6.3.4 Immediate operand rotates 21
6.3.5 Writing to R15 21
6.3.6 Using R15 as an operand 21
6.3.7 Asscmbler syntax 21
6.3.8 Examples 22
6.4 Multiply and multiply-accumulate (MUL, MLA) 23
6.4.1 Operand restrictions 23
6.4.2 PSR flags 23
6.4.3 Writing to R15 24
6.4.4 Using R15 as an operand 24
6.4.5 Assembler syntax 24
= 6.4.6 Examples 24
6.5 Single data transfer (LDR, STR) 25
6.5.1 Offsets and auto-indexing 25
9 6.5.2 Shifted register offset 26
6.5.3 Bytes and words 26
6.5.4 Use of R15 26
Z 6.5.5 Address exceptions 26
6.5.6 Data Aborts 27

ARM Datasheet ii

L)

)

=

®

6.5.7 Assembler syntax 27
6.5.8 Examples 2% :
6.6 Block data transfer (L.LDM, STM) 29 @
6.6.1 The register list 29
6.6.2 Addressing modes 29 =
Post-increment addressing 30 -
Pre-increment addressing 30
Post-decrement addressing 31 63 -
Pre-decrement addressing 31 it
6.6.3 Transfer of RIS 32
6.6.4 Forcing transfer of the user bank 32 @
6.6.5 Use of R15 as the base 32
6.6.6 Inclusion of the base in the register list 32
6.6.7 Address exceptions 32 @
6.6.8 Data Aborts 32
Aborts during STM instructions 33
Aborts during LDM instructions 33 @\
6.6.9 Asscmbler syntax 33
Addressing modc names 33
6.6.10 Examples 34 @
6.7 Soltware interrupt 35
6.7.1 Return from the supervisor 35)
6.7.2 Comment ficld 35 @
6.7.3 Assemblcr syntax 35
6.7.4 Examples 36
6.8 Co-Processor data operations 37 @1
6.8.1 The Co-Processor ficlds 37
6.8.2 Assembler syntax 37 @
6.8.3 Examples 38
6.9 Co-Processor data transfers 39
6.9.1 The Co-Processor ficlds 39 @
6.9.2 Addressing modes 39
6.9.3 Use of R15 ‘ 40
6.9.4 Forcing address translation 40 @
6.9.5 Address exceptions 40
6.9.6 Data aborts 40
6.9.7 Asscmbler syntax 40 @ '
6.9.8 Examples 41
6.10 Co-Processor register transfers 42
6.10.1 The Co-Processor fields 42 @3 {
6.10.2 Transfers to R15 42
6.10.3 Transfers from R15 42 =
6.10.4 Assembler syntax 43 @
6.10.5 Examples 43
6.11 Undefined instructions 44 =
6.11.1 Assembler syntax 44 @'
6.12 Instruction set summary 45 [
6.13 Instruction set examples 46 Al
6.13.1 Using the conditional instructions 46 =
6.13.2 Pseudo random binary sequence generator 46 [
6.13.3 Multiplication by constant using the barrel shifter 47 @! 1
6.13.4 Loading a word from an unknown alignment 48
6.13.5 Sign/zero extension of a half word 48 - l
I
[

iv ARM Datasheet =

SN o R R "“""-*“'r-x"vr"’“‘r\"“‘"ﬁ “th\TWi’vszm‘rmWﬁ{prrw 800 ﬁw
. = 3 = - s i b g e ¢ e

o v B enaannos

i

.J

0’

‘B

6.13.6 Return setting condition codes 48
7. Mcmory Interface 49
7.1 Cycle types 49
7.2 Byte addressing 51
7.3 Address timing 51
7.4 Memory management 52
7.5 Use of MEMC 52
8. Co-Processor Interface 53
8.1 Interface signals 53
8.1.1 Co-Processor present/absent 53
8.1.2 Busy-wailing 53
8.1.3 Pipeline following 33
8.2 Data transfer cycles 53
8.3 Register transfer cycle 54 :
8.4 Privileged instructions 54 i
8.5 Idempotency 54 :
8.6 Undefined instructions 55 j
8.7 Use of MEMC 55 :
9. Instruction Cycle Operations 56
9.1 Branch and branch with link 56
9.2 Data operations 56
9.3 Multiply and multiply accumulate 57
9.4 Load register 58
9.5 Store register 59
9.6 Store multiple registers 59
9.7 Load multiple registers 60
9.8 Software interrupt and exception entry 61
9.9 Co-Processor data operation 61 i
9.10 Co-Processor data transfer (from memory to Co-Processor) 62 i
9.11 Co-Processor dala transfer (from Co-Processor to memory) 63
9.12 Co-Processor register transfer (Load from Co-Processor) 63
9.13 Co-Processor register transfer (Store to Co-Processor) 64
9.14 Undefined instructions and Co-Processor absent 64
9.15 Unexecuted instructions 64
9.16 Instruction speeds 65
10. DC Parameters 66
10.1 Absolute Maximum Ratings 66
10.2 DC Operating Conditions 67
10.3 DC Characteristics 68
11. AC Parameters 69
12. Packaging 73
13. Compatibility with Prototype ARMs 75
13.1 Plug-in compatibility 75
13.2 Bug fixes 75
13.3 Design differences 75

ARM Datasheet v

&

l._’

L

'y

‘a

u

v/

1. Introduction

The ARM (Acomn RISC Machine) is a gencral purpose 32-bit single-chip microprocessor. The architecture
is bascd on Reduced Instruction Set Computer (RISC) principles, and the instruction set and related decode
mechanism arc greatly simplified compared with microprogrammed Complex Instruction Set Computers.
This simplification results in a high instruction throughput and a good real-time interrupt response from a
small and cost-effective chip.

The instruction sct comprises nine basic instruction types. Two of these make use of the on-chip arithmetic
logic unit (ALU), barrel shifter and multiplicr to perform high-speed operations on the data in a bank of 27
rcgisters, cach 32 bits wide. Two instruction types control the transfer of data between main memory and
the register bank, one optimised for flexibility of addressing and the other for rapid context switching. Two
instructions control the flow and privilege level of exccution, and the remaining three types are dedicated to
the control of external Co-Processors which allow the functionality of the instruction set to be extended off-
chip in an open and uniform way.

The ARM instruction sct has proved to be a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is also straightforward,
unlike some RISC processors which depend on sophisticated compiler technology to manage complicated
instruction interdependencies.

Pipelining is employed so that all parts of the processing and memory systems can operate continuously.
Typically, while one instruction is being executed, its successor is being decoded, and a third instruction is
being fetched from memory.

The memory interface has been designed to allow the performance potential to be realised without incurring
high costs in.the memory system. Speed critical control signals are pipelined to allow system control
functions to be implemented in standard low-power logic, and these control signals facilitate the
exploitation of the fast local access modes offered by industry standard dynamic random access memories
(DRAMs).

FEATURES
* 32-bit data bus
* 26-bit address bus giving a 64-MByte uniform address space
* Support for virtual memory systems
* Simple but powerful instruction set
* Co-Processor interface for instruction set extension
* Good high-level language compiler support
* Peak execution rate of 10 million instructions per second (MIPS)
* Fast interrupt response for real-time applications
* Low power consumption (0.1 W typical) with a single +5 V supply
* 84-pin JEDEC B leadless chip carrier or plastic leaded chip carrier

ARM Datasheet !

H ® @

2. Block Diagram

P @
ﬁ B/'W R/W
ABE —)
ADDRESS REGISTER : l«—— PHI -
ALE — ! -
c
4 g . «— PH2 =
p /'y <
E ADDRESS. s
INCREMENTER .
s . <— IRQ @
Q u |
: i
: <—— FIQ @ !
REGISTER BANK r«—— RESET

(27 32-bit registers)

—
[INSTRUCTION

DECODER

&
L. | TRANG

)

<— ABORT

weco Cre

®

'
S
®

ane [Ee—
—/

wco »
wco m

 {
MULTIPLIER @7 !
» M[0,1] I
F @
——» MREQ
BARREL @
SHIFTER

3 SEQ
NS J\/L
\ 32-BIT ALU / - » CPI

<— CPA

®

Ll

T

<— CPB

{3

15 ~ 1y

INSTRUCTION PIPELINE
DBE —» WRITE DATA REGISTER & READ DATA REGISTER

" 7>

D(0:31] D[0:31]

4

m
W W UUOT N WU N UV W WO U S 1 Roveve v e e

2 ARM Datasheet

m @

\ [ghiet AR

] S '-::r‘ LA '\"5"5" \ “"“"}‘:5«:‘\ ;; 31-—:;:- ‘*E.‘i.o ::‘t’“‘ :' i;?‘:E:' ‘

3. Functional Diagram

)]
MREQ W
® PHI e SEQ -
Clocks — ¥
= A[0:25] >
Memory
EE Interface .
IRQ B !
Interrupts FIQ R W _
B/W
B RESET ARM OFC =
TRANS " Memory
2 Management
ALE _ M[0,1] > Interface
Ly ABORT
¥ Bus ABE o ~ _/
Control o
tre DBE x
o)
Co-Processor
L Interface
2 VDD (3) _ nte
Power vss () B CPB
= - S
=
= |
ARM Datasheet 3

4. Description of Signals

Name Pin
PH2 1
PH1 2
R/IW 3
orcC 4
MREQ 5
ABORT 6

IRQ 7

;
FIQ 8
RESET 9

p

. TRANS 10

I

I

i VDD 11,32,55

E

4

\

it

s me gt g DTt B T T e T L
' LTt AL TS M

Type Description

ICk
ICk
oC

oC

oC

IT

IT

IT

oC

Phase two clock.
Phase one clock.

Not read / write. When HIGH this signal indicates a processor wrile
cycle; when LOW, a read cycle. It becomes valid during phase 2 of the
cycle before that to which it refers, and remains valid to the end of
phase 1 of the rcferenced cycle.

Not op-code fetch. When LOW this signal indicates that the processor is
fetching an instruction from memory; when HIGH data (if anything) is
being transferred. The signal becomes valid during phase 2 of the
previous cycle, remaining valid through phase | of the referenced cycle.

Not memory request. This signal, when LOW, indicates that the
Processor requircs memaory access during the following cycle. The signal
becomes valid during phase 1, remaining valid through phase 2 of the
cycle preceding that to which it refers.

Memory abort. This is an input which allows the memory system (o tell
the processor that a requested access is not allowed. The signal must be
valid before the end of phase 1 of the cycle during which the memory
transfer is attempted.

Not interrupt request. This is an asynchronous interrupt request to the
processor which causes it to be interrupted if taken LOW when the
appropriate enable in the processor is active. The signal is level sensitive
and must be held LOW untl a suitable response is received from the
Processor.

Not fast interrupt request. As IRQ, but with higher priority. May be
taken LOW asynchronously to interrupt the processor when the
appropriate enable is active.

Reset. This is a level sensitive input signal which is used to start the
processor from a known address. A HIGH level will cause the instruction
being executed to terminate abnormally. When RESET becomes LOW
for at least onc clock cycle, the processor will re-start from address 0.
RESET must remain HIGH for at least two clock cycles, and during the
HIGH period the processor will perform dummy instruction fetches with
the address incrementing from the point where reset was activated. The
address value will overflow to zero if RESET is held beyond the
maximum address limit.

Not memory translate. When this signal is LOW it indicates that the
processor is in user mode, or that the supervisor is using a single transfer
instruction with the force translate bit active. It may be used to tell
memory management hardware when translation of the addresses should
be turned on, or as an indicator of non-user mode activity.

PWR Supply.

P -

ARM Datasheet

B ket S o pat R L X o0 R g Bttt Sy i i ol WHTCIT TG
AR TR TA TTE TEE RSP E AL ER A
av . * i i T e n gt i N SR T .

® ®

m W

L \EECY

™ (®

(m\

-

3
! VSS
ik M([1,0]
K R

)
N
u
@
ol ALE
K

)
R A[25:0]
3
& ABE
b D{0:31]
3

-

DBE

c @ w w J
|
2

33,5475
13,14

15

17-31,34-44 0CZ

45

46-53,56-74,
77-81

83

34

Description of Signals

PWR Supply.

oC

oC

IT

IC

I0TZ

IT

oc

Not processor mode. These are output signals which are the inverses of
the internal status bits indicating the processor operation mode.

Sequential address. This is an output signal. It will become HIGH when
cither:

= the address for the next cycle is being generated in the address
incrementer, so will be equal to the present address (in bytes) plus
4, or

« during a cycle which did not use memory (MREQ inactive),
when the next cycle will use memory and the address will be the
same as the current address.

The signal becomes valid during phase 1 and remains so through phase 2
of the cycle before the cycle whose address it anticipates. It may be
used, in combination with the low-order address lines, to indicate that the
next cycle can use a fast memory mode (for example DRAM page
mode) and/or to by-pass the address translation system.

Address latch enable. This input to the processor is used to control
transparent latches on the address outputs. Normally the addresses change
during phase 2 to the value required during the next cycle, but for direct
interfacing to ROMs they are required to be stable to the end of phase 2.
Taking ALE LOW until the end of phase 2 will ensure that this happens.
If the system does not require address lines to be held in this way, ALE
may be held permanently HIGH. The ALE latch is dynamic, and ALE
should not be held LOW indefinitely.

Addresses. This is the processor address bus. If ALE (address latch
cnable) is HIGH, the addresses become valid during phase 2 of the cycle
beforc the one to which they refer and remain so during phase 1 of the
referenced cycle. Their stable period may be controlled by ALE as
described abaove.

Address bus cnable. This is an input signal which, when LOW, puts the
address bus drivers into a high impedance state. ABE may be tied HIGH
when there is no system requirement to turn off the address drivers.

Data Bus. These are bi-directional signal paths which are used for data
transfers between the processor and external memory, as follows:

- during read cycles (when R/W = 0), the input data must be valid
before the end of phase 2 of the transfer cycle

« during write cycles (when R/W = 1), the output data will become
valid during phase 1 and remain so throughout phase 2 of the
transfer cycle.

Data bus enable. This is an input signal which, when LOW, forces data
bus drivers into a high impedance state. (The drivers will always be high
impedance except during write cycles, and DBE may be tied HIGH in
systems which do not require the data bus for DMA or similar
activities.)

Not byte / word. This is an output signal used by the processor O
indicate to the external memory system when a data transfer of a byte

ARM Datasheet 5

Chapter 4

CPI 82
cPB 12
CPA 76
ey

oC

I'T

IT

length is required. The signal is HIGH for word transfers and LOW for
byte transfers and is valid for both read and write cycles. The signal will
become valid during phase 2 of the cycle before the one during which
the transfer will take place. It will remain stable throughout phasc 1 of
the transfer cycle.

Co-Processor instruction. When ARM exccutes a Co-Processor
instruction, it will take this output LOW and wait for a response from
the Co-Processor. The action taken will depend on this response, which
the Co-Processor signals on the CPA and CPB inputs.

Co-Processor busy. A Co-Processor which is capable of of performing the
operation which ARM is requesting (by asserting CPI), but cannot
commit to starting it immediately, should indicate this by leuing CPB
float HIGH. When the Co-Processor is ready to start it should take CPB
LOW. ARM samples CPB at the end of phase 1 of the cycle when
CPI is LOW.

Co-Processor absent. A Co-Processor which is capable of performing the
operation which ARM is requesting (by asserting CPI) should take CPA
LOW immediately. If CPA is HIGH at the end of phase 1 of the cycle
when CPLis LOW, ARM will abort the Co-Processor handshake and
take the undefined instruction trap. If CPA is LOW and remains LOW,
ARM will busy-wait until CPB is LOW and then complete the Co-
Processor instruction.

Key to Signal Types

ICk
IT
oC
0CZ
[I0TZ
PWR

Unbuffered clock inputs

Input with TTL compatible levels

Output with CMOS compatible levels

3-state output with CMOS compatible levels

Bi-dircctional 3-state input/output with TTL compatible levels
Power pins

ARM Datasheet

LIV S ETORTLTALN RN TN TN IR L gy vq-v-?u-r-uv. b A Toc Al A -.--;--_‘—..‘....‘-..-.--p‘ T
L S A e Y f LR TSR ANEN" T T 2 i . RN A
. . o, o Bad

®

BB ®® B
¥ VNN VN U W DRUUSH U NN PN VPRI BN S B EDON TV DESUV BN BN BY RROwRN T R e ree rW e e

f@

maom

l)

5. Programmers’ Model

5.1 Introduction

ARM has a 32 bit data bus and a 26 bit address bus. The data types the processor supports are Bytes (3
bits) and Words (32 bits), where words must be aligned to four byte boundaries. Instructions are exactly
one word, and data operations (c.g. ADD) are only performed on word quantities. Load and store
operations can transfer either bytcs or words.

ARM supports four modes of operation, including protected supervisor and interrupt handling modes.

5.2 Registers

The processor has 27 32-bit registers, 16 of which are visible to the programmer at any time. The visible
subset depends on the processor mode; special registers are switched in to support interrupt and supervisor
processing. The register bank organisation is shown in figure 1.

User mode is the normal program execution state; registers R0-15 are directly accessible.

All registers are general purpose and may be used to hold data or address values, except that register R15
contains the Program Counter (PC) and the Processor Status Register (PSR). Special bits in some
instructions allow the PC and PSR to be treated together or separately as required. Figure 2 shows the
allocation of bits within R15.

R14 is used as the subroutine Link register, and receives a copy of R15 when a Branch and Link
instruction is executed. It may be treated as a general purpose register at all other times. R14_svc, R14_irq
and R14_fiq are used similarly to hold the return values of R15 when interrupts and exceptions arise, or
when Branch and Link instructions are executed within supervisor or interrupt routines.

The FIQ processing state (described in the Exceptions section) has seven private registers mapped to R8-14
(R8_fig-R14_fiq). Many FIQ programs will not need to save any registers.

The IRQ processing state has two private registers mapped to R13 and R14 (R13_irq and R14_irq).

Supervisor mode (entered on SWI instructions and other traps) has two private registers mapped 0 R13 and
R14 (R13_svc and R14_svc).

The two private registers allow the IRQ and supervisor modes each to have a private stack pointer and link
register. Supervisor and [RQ mode programs are expected to save the User state on their respective stacks
and then use the User registers, remembering to restore the User state before returning.

In User mode only the N, Z, C and V bits of the PSR may be changed. The I, F and Mode flags will
change only when an exception arises. In supervisor and interrupt modes all flags may be manipulated
directly.

N
N

5.3 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution 0 be broken, so that
(for instance) the processor can be diverted to handle an interrupt from a peripheral. The processor state
just prior to handling the exception must be preserved so that the original program can be resumed when
the exception routine has completed. Many exceplions may arise at the same time.

ARM handles exceptions by making use of the banked registers o save state. The old PC and PSR are
copied into the appropriate R14, and the PC and processor mode bits are forced to a value which depends
on the exception. Interrupt disable flags are set where required to prevent otherwise unmanageable nestings

ARM Datasheet 7

Chapter 5

LA

(K"@

user mode | svc mode | irqg mode | fiq mode“ | é
RO -
R1 =
R2 7
R3 &
R4 -
R5 .
il :
R6 e l
R7 & :
R8 R8_fiq @ !
R9 R9_fiq E
R10 R10_fig @i
R11 R11_fig - :
R12 R12_fig l
R13 R13_svc R13_irg R13_fig @ i
R14 R14_svc R14_irq R14_fiq @ E
|
R15 (PC/PSR) & =
:
-
i

of exceptions. In the case of a re-entrant interrupt handler, R14 should be saved onto a stack in main
memory before ré-enabling the interrupt. When multiple exceptions arise simultaneously a fixed priority

Figure 1: Register Organisation

determines the order in which they are handled.

VNN I AL SAVAS LIRS WA S b S P SR NS PR ocd b e Yol Frotiaog e S Rt i it R R OB G DR T
ve ¥ e - RCRPI TP fe PR v X s g e liegy e BN e S B Lyt P G M S e A . L SR)

ARM Datasheet

., -

-

\

m
T %1 81 N1

m m

Programmers’ Model

AN 30 29 28 27 26 25 2 1 Q

N|lZ|C]|V [F PROGRAM COUNTER (PC) M1 | MO

Processor Mode

00 = User Mode
01 = F1IQ Mode
10 = IRQ Mode
11 = Supervisor Mode

v
Program Counter
(Word Aligned)

FlQ Disable
» 0 = Enable
’ 1 = Disable
IRQ Disable
0 = Enable
1 = Disable
Qverflow

Carry/Not Borrow/
Rotate Extend
Zero

Negative/
Signed Less Than

Figure 2: The Program Counter (PC) and Processor Status Register (PSR)

5.3.1 FIQ
The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the FIQ pin LOW. This input

AV]

can accept asynchronous transitions, and is delayed by one clock cycle for synchronisation before it can
affect the processor execution flow. It is designed to support a data transfer or channel process, and has
sufficient private registers to remove the need for register saving in such applications, so that the overhead
of context switching is minimised. The FIQ exception may be disabled by sctting the F flag in the PSR
(but note that this is not possible from user mode). If the F flag is clear ARM checks for a LOW level on
the output of the FIQ synchroniser at the end of each instruction. When ARM is FIQed it will:
(1) save R15 in R14_fiq;

) (2) force MO, M1 to FIQ mode and set the F and I bits in the PC word,
(3) force the PC to fetch the next instruction from address 1CH.
To return normally from FIQ use SUBS PCR14_fiq,#4. This will resume execution of the interrupted code

|

sequence, and restore the original mode and interrupt enable state.

5.3.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on the IRQ pin. It
has a lower priority than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be
masked out at any time by setting the I bit in the PC (but note that this is not possible from user mode). If
the I flag is clear ARM checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction. When successfully IRQed ARM will:

- @ W

—

ARM Datasheet 9

IR R
RO SIE SAER ia Li ih

Chabler 5

(1) save R15 in R14_irg;
(2) force MO, M1 to IRQ mode and sct the [bit in the PC word;

(3) force the PC to fewch the next instruction from address 18H.

To rcwrn normally from IRQ use SUBS PCRI14_irq,#4. This will restore the original processor state and
thereby re-enable IRQ.

5.3.3 Address exception trap

An address exception ariscs whenever a data transfer is attempted with a calculated address above
3FFFFFFH. The ARM address bus is 26 bits wide, and an address calculation will have a 32-bit result. If
this result has a logic "1" in any of the top 6 bils it is assumed that the address overflow is an error, and

the address cxception trap is taken.

Note that a branch cannot cause an address exception, and a block data transfer instruction which starts in
the lcgal arca but increments into the illegal arca will not trap. The check is peformed only on the address
of the first word to be transferred.

When an address exception is scen ARM will:
(1) if the data transfer was a store, force it to load. (This protects the memory from spurious writing.)

(2) complete the instruction, but prevent intemal state changes where possible. The state changes are the
same as if the instruction had aborted on the data transfer.

(3) save R15 in R14_svc;
(4) force MO, M1 o supervisor mode and sct the I bit in the PC word;

(5) force the PC to fetch the next instruction from address 14H.

Normally an address exception is caused by crroncous code, and it is inappropriate to resume execution. If
a rcturn is required from this trap, use SUBS PC,R14_svc,#4. This will return to the instruction after the
onc causing the trap.

5.3.4 Abort

The Abort signal comes from an external Memory Management system, and indicates that the current
memory access cannot be completed. For instance, in a virtual memory system the data corresponding to
the current address may have been moved out of memory onto a disc, and considerable processor activity
may be required to recover the data before the access can be performed successfully. ARM checks for an
Abort at the end of the first phase of cach bus cycle. When successfully Aborted ARM will respond in one
of three ways:

(i) if the abort occurred during an instruction prefetch (a Prefetch Abort), the prefetched instruction is
marked as invalid; when it comes to execution, it is reinterpreted as below. (If the instruction is not
executed, for example as a result of a branch being taken while it is in the pipeline, the abort will
have no effect.)

(if) if the abort occurred during a data access (a Data Abort), the action depends on the instruction type.
Data transfer instructions (LDR, STR) are aborted as though the instruction had not executed. The
LDM and STM instructions complete, and if writeback is set, the base is updated. If the instruction
would normally have overwritten the base with data (i.e. LDM with the base in the transfer list), this
overwriting is prevented. All register overwriting is prevented after the Abort is indicated, which
means in particular that R15 (which is always last to be transferred) is preserved in an aborted LDM
instruction.

(iii) if the abort occurred during an internal cycle it is ignored.

10 ARM Datasheet

R L R R P AT S iRt £ s WA S R e YOO EE Stk e R ot 4 A B ML SO-Saa it R
S Ul S - ' n .= . e DY -

M

1 1

® |

™

|

n® Mm

m m ®

l

]
|

. pr—— pa p—— o —

-

m

B

‘&

Programmers’ Model

Then, in cases (i) and (ii):

(1) save R15 in R14_svc;

(2) force MO, M1 to supervisor mode and set the I bit in the PC word;

(3) force the PC to fetch the next instruction from address OCH for Prefetch Abort, 10H for Data Abort.

To continue after a Prefetch Abort use SUBS PC,R14_svc#4. This will attempt to re-execute the aborting
instruction (which will only be effective if action has been taken to remove the cause of the original abort).
A Data Abort requircs any auto-indexing to be reversed before returning to re-execute the offending
instruction, the rcturn being done by SUBS PC,R14_svc #8.

The abort mechanism allows a demand paged virtual memory system to be implemented when a suitable
memory management unit (such as MEMC) is available. The processor is allowed to generate arbitrary
addresses, and when the data at an address is unavailable the memory manager signals an abort. The
processor traps into system softwarc which must work out the cause of the abort, make the requested data
available, and retry the aborted instruction. The application program needs no knowledge of the amount of
memory available to it, nor is its state in any way affected by the abort.

5.3.5 Software interrupt

The software interrupt is used for getting into supervisor mode, usually to request a particular supervisor
function. ARM will:

(1) save RI5 in R14_svc;
(2) force MO, M1 to supervisor mode and set the I bit in the PC word;
(3) force the PC to fetch the next instruction from address 08H.

To return from a SWI, use MOVS PC,R14_svc. This rctumns to the instruction following the SWI.

5.3.6 Undefined instruction trap

When ARM executes a Co-Processor instruction or an Undefined instruction, it offers it to any Co-
Processors which may be present. If a Co-Processor can perform this instruction but is busy at that
moment, ARM will wait until the Co-Processor is ready. If no Co-Processor can handle the instruction
ARM will take the undefined instruction trap.

The trap may be used for software emulation of a Co-Processor in a system which does not have the Co-
Processor hardware, or for general purpose instruction st extension by software emulation.

When the undefined instruction trap is taken ARM will:

(1) save R15 in R14_svc;

(2) force MO, M1 to supervisor mode and set the I bit in the PC word;
(3) force the PC to fetch the next instruction from address 04H.

To return from this trap (after performing a suitable emulation of the required function), use MOVS
PC,R14_svc. This will return to the instruction following the undefined instruction.

ARM Datasheet 11

Chapter 5

5.3.7 Reset

When Reset goes HIGH ARM will:

(1) stop the currently cxecuting instruction and start exccuting no-ops. When Reset goes LOW again it

will:

(2) save R15 in R14_svc;

(3) force MO, M1 to supervisor mode and sct the F and I bits in the PC word:

(4) forcc the PC to feich the next instruction from address OH.

5.3.8 Vector Summary

Address

0000000 Reset

0000004 Undefined instruction
0000008 Software interrupt
000000C Abort (prefetch)
0000010 Abort (data)

0000014 Address exception
0000018 IRQ

000001C FIQ

These are byte addresses, and will normally contain a branch instruction pointing to the relevant routine.
The FIQ routine might reside at 000001CH onwards, and thereby avoid the need for (and execution time

of) a branch instruction.

5.3.9 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they

will be handled:
(1) Resct (highest priority)

(2) Address exception, Data abort

(3) FIQ
4) IRQ

(5) Prefetch abort

(6) Undeflined Instruction, Software interrupt (lowest priority)

h

1

{

L L)

|“\1

®mHE®ED®®D®

S e G PETOTE——— g e —

- pp—

Note that not all exceptions can occur at once. Address exception and data abort are mutually exclusive,
since if an address is illegal the ARM will ignore the ABORT input. Undefined instruction and software
interrupt are also mutually exclusive since they each correspond to particular (non-overlapping) decodings
of the current instruction.

If an address exception or data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the F flag
in the PSR is clear), ARM will enter the address exception or data abort handler and then immediately
proceed to the FIQ vector. A normal return from FIQ will cause the address exception or data abort handler
to resume execution. Placing address exception and data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection, but the time for this exception entry should be
added to worst case FIQ latency calculations.

®m M m

"

5

ARM Datasheet

i

R T B e e B S B At e Wiaes i S T)

m o

®

| r——

|
- |
i
|
i
4
]

i/

Programmers’ Model

5.3.10 Interrupt Latencies

The worst case latency for FIQ, assuming that it is enabled, consists of the longest time the request can
take to pass through the synchroniser (Tsyncmax), plus the time for the longest instruction to complete
(Tldm, the longest instruction is load multiple registers), plus the time for address exception or data abort
entry (Texc), plus the time for FIQ entry (Tfig). At the end of this time ARM will be cxecuting the
instruction at 1CH.

Tsyncmax is 2.5 processor cycles, Tldm is 18 cycles, Texc is 3 cycles, and Tfig is 2 cycles. The total time
is therefore 25.5 processor cycles, which is just over 2.5 microseconds in a system which uscs a continuous
10 MHz processor clock. In a DRAM bascd system running at 4 and 8 MHz, for example using MEMC,
this time becomes 4.5 microseconds, and if bus bandwidth is being used to support video or other DMA
activity, the time will increase accordingly.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ has higher priority
and could delay entry into the IRQ handling routine for an arbitrary length of time.

The minimum latency for FIQ or IRQ consists of the shortest time the request can take through the
synchroniser (Tsyncmin) plus Tfig. This is 3.5 processor cycles.

ARM Datasheet 13

6. Instruction Set

6.1 The condition field

31 28 27 0

Cond

—

Condition field
0000 = EQ - Z set (equal)
0001 « NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear {unsignad lower)
0100 = Ml - N sel (negative)
0101 = PL - N dlear (positive or zer0)
0110 « VS - V sel (overilow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or sams)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N sat and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set {less than or equal)
1110 = AL - aways
1111 = NV - never

All ARM instructions arc conditionally executed, which means that their execution may or may not take
place depending on the values of the N, Z, C and V flags in the PSR .at the end of the preceding
instruction.

If the ALways condition is specificd, the instruction will be exccuted irrespective of the flags, and likewise
the NeVer condition will cause it not to be executed (it will be a no-op, ic take one cycle and have no
effect on the processor state).

The other condition codes have meanings as detailed above, for instance code 0000 (EQual) causes the
instruction to be cxecuted only if the Z flag is set. This would correspond to the casc where a compare
(CMP) instruction had found the two operands to be equal. If the two operands were different, the compare
instruction would have cleared the Z flag, and the instruction will not be executed.

14 ARM Datasheet

P S A0 i e St o i -ﬁﬁ——v-1w‘.—9vtr;-\-\t-ﬂrgz-r‘v7--m‘?-?.ﬁ-.:qriq-?:}a\—,;‘nﬁ-‘—‘“-__i_t T
LS el Sl S ol N B

3

.-

_.’}

Instruction Set

6.2 Branch and branch with link (B, BL)

31 28 27 25 24 23 0
Cond 101 i offset
S
Link bit
Q = Branch
1 = Branch with Link
Condition field

see section 6.1

The instruction is only executed if the condition specified in the condition field is true (see section 6.1).

All branches take a 24 bit offsct. This is shifted left two bits and added to the PC, with any overflow being
ignored. The branch can thercfore reach any word aligned address within the address space. The branch
offset must take account of the prefetch operation, which causes the PC to be 2 words ahead of the current

instruction.

6.2.1 The link bit

Branch with Link writes the old PC and PSR into R14 of the current bank. The PC value written into the
link register (R14) is adjusted 0 allow for the prefetch, and contains the address of the instruction

following the branch and link instruction.

To return and restore the PSR use MOVS PC,R14 if the link register is still valid or LDM Rnl,(PC}* if
the link register has been saved onto a stack. To return without restoring the PSR use MOV PC,R14 if the
link register is still valid or LDM Rn!,{PC) if the link register has been saved onto a stack.

6.2.2 Assembler syntax
B{L}{cond} <expression>

(L) is used to request the Branch with Link form of the instruction. If absent, R14 will not be affected by
the instruction.

(cond) is a two-char mnemonic as shown in section 6.1 (EQ, NE, VS etc.). If absent then AL (ALways)
will be used.

<expression> is the destination. The assembler calculates the offset.

Items in () are optional. Items in <> must be present.

ARM Datasheet 15

Chapter 6

6.2.3 Examples

16

here BAL here ;

B there ;

CMP R1, #0 ;
BEQ fred ;

BL sub + ROM ;

ADDS R1, #1 ;
BLCC sub 2

BLNV sub :

assembles to EAFFFFFE
(note effect of PC offset)

ALways condition used as default

compare register 1 with zero

branch to fred if register 1 was zero

otherwise continue to next instruction
unconditionally call subroutine at computed address
add 1 to register 1, setting PSR flags on the result
call subroutine if the C flag is clear, which will be
the case unless Rl contained FFFFFFFFH

otherwise continue to next instruction

NeVer call subroutine (this is a NO-QOP)

ARM Datasheet

LI

-

e ®

I UL L L L O O L O

m m

T S T S L P E BBSTE P2 et § B R VRt b IO LS SR AR R L W SR ST
: R F) b -) ERE T TR ke ‘

by AL

pheaitetan WU b o

o W
i

v, gt

