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This chapter provides an overview of the ARM810.

1.1 Introduction 1-2
1.2 The ARM810 Architecture 1-2
1.3 The Instruction Set 1-3

Overview1
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1.1 Introduction
The ARM810 is a general purpose 32-bit microprocessor with 8KB unified cache, write
buffer and Memory Management Unit (MMU) combined in a single chip. The CPU
within ARM810 is the ARM8 core designed to ARM architecture version 4.0. The
ARM810 is software compatible with earlier ARM architectures and can be used with
ARM Ltd’s support chips.

The architecture of the ARM810 is based on Reduced Instruction Set Computer (RISC)
principles, and its instruction set and related decode mechanism are much simpler than
those of microprogrammed Complex Instruction Set Computers.

1.2 The ARM810 Architecture
The block diagram for the ARM810 core is shown in Figure 1-1: ARM810 block
diagram  on page 1-3. The major blocks of the ARM810 are the ARM8 CPU, Memory
Management Unit (MMU), Write Buffer (WB), Coprocessor15 (CP15), 8KB cache and
external Bus Interface Unit (BIU).

The ARM8 CPU core combines an instruction Prefetch Unit (PU) with a four stage
instruction and data pipeline to make a CPU with a five stage pipeline. This ensures
that all parts of the processing and memory systems can operate continuously and the
performance of each stage can be maximised allowing the use of very high clock rates.
The processor implements static branch prediction in the PU which predicts whether or
not a branch will be taken depending on the branch destination address. If the branch
instruction is predicted as being taken then further instructions are fetched from the
branch destination and the branch is removed. If it is predicted that a branch is not
taken then the instruction is removed from the instruction pipeline.

Double-bandwidth reads to the on-chip memory reduces the average Load multiple
CPI value by 1.5 when compared to a single bandwidth architecture running the same
code. The single register Load and Store instructions require only one cycle for the
normal cases. (This assumes cache hit and write buffer not full.)

The processor has an on-chip unified instruction and data cache supporting write-back
and write-through operation. Together with the write buffer, this substantially raises the
average execution speed and reduces the average amount of memory bandwidth
required by the processor when compared to a processor without these features. This
allows the external memory to support additional processors or Direct Memory Access
(DMA) channels with minimal performance loss and results in low external memory
power consumption. In addition the cache also has a lock down capability that can
ensure that critical code such as interrupt routines can be locked into the cache to
ensure low execution latency.

The MMU supports a conventional two-level page-table structure and a number of
extensions which make it ideal for embedded control, UNIX and Object Oriented
systems.

The Bus Interface has been designed to allow the performance potential to be realised
without incurring high costs in the memory system. Speed critical control signals are
pipelined to allow system control functions to be implemented in standard low power
logic. These control signals allow the exploitation of page mode accesses offered by
industry standard DRAMs.

The ARM810 is a fully static device designed to minimise power requirements. This
makes it ideal for portable applications where both of these features are essential.
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1.3 The Instruction Set
The ARM810 uses the ARM architecture version 4.0 instruction set, which comprises
eleven basic instruction types:

• Two perform high-speed operations on data in a bank of thirty one 32-bit
registers, using the on-chip arithmetic logic unit, shifter and multiplier.

• Three control data transfer between the registers and memory, one optimised
for flexibility of addressing, another for rapid context switching and the third for
swapping data.

• Three adjust the flow, privilege level and system control parameters of
execution.

• Three are dedicated to the control of coprocessors. However ARM810
implements only MCR and MRC, which allow access to the ARM810 system
control coprocessor, CP15.

The ARM instruction set is a good target for compilers of many different high-level
languages, and is also straightforward to use when programming in assembly language
- unlike the instruction sets of some RISC processors which rely on sophisticated
compiler technology to manage complicated instruction interdependencies.

All existing code compiled for previous ARM processors will run on ARM810 with only
rare exceptions.

 Figure 1-1: ARM810 block diagram
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This chapter documents the ARM810 signals.

2.1 Functional Diagram 2-2
2.2 Signals 2-3

Signal Description2
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2.1 Functional Diagram

 Figure 2-1: ARM810 functional diagram

PLLSLEEP

REFCLK

REFCLKCFG[1:0]

PLLCFG[6:0]

Clocks

VCC
VDDPower

TCK
TDI
TDO

TMS

nTRST

JTAG

nRW

MAS[1:0]

LOCK

D[31:0]

A[31:0]
Address

Bus

Data
Bus

Control
Bus

nMREQ

SEQ

ABORT

Memory
Interface

Chip
Test

Test

ARM810

ABE
DBE
APE
MSE

Bus
Controls

PLLRANGE

TESTOUT[5:0]

nBLS[3:0]

VSS
PLLVDD
PLLVSS

nRESET

nIRQ

nFIQInterrupts

PCLK

MCLK

nWAIT

PLLFILT1

PLLFILT2

and PLL
configuration

TESTMODE



Open Access - Preliminary

Signal Description

2-3ARM810 Data Sheet
ARM DDI 0081E

2.2 Signals

Name Type Description:

A[31:0] OCZ Address Bus. This bus signals the address requested for memory accesses.
Normally it changes during phase 2 of the bus clock. The timing can be changed
using APE.

ABE I Address bus enable. When this input is LOW, the address bus A[31:0] ,
MAS[1:0] , CLF, nBLS[3:0] , nRW and LOCK  are put into a high impedance
state (Note 1).

ABORT I External abort. Allows the memory system to tell the processor that a requested
access has failed. Only monitored when ARM810 is accessing external memory.

APE I Address pipeline enable control input. When APE is HIGH, address and
address-timed outputs are generated with normal pipeliined timing, where a new
address is generated in the second phase of the bus clock (MCLK  HIGH or
PCLK  LOW). Taking APE LOW delays these signals by one clock phase so they
change in the first phase of the following bus cycle (MCLK  LOW or PCLK
HIGH). See the descriptions for MCLK /PCLK  and Chapter 11, ARM810
Clocking  for bus clock information. The address-timed signals are A[31:0] ,
MAS[1:0] , nBLS[3:0 ], CLF, LOCK  and nRW.

CLF O Cache line fill. CLF HIGH indicates that the current read cycle is cacheable. CLF
is always HIGH for writes. This signal may be used to indicate to a second level
cache controller that a read is cacheable in the second level cache (if present).

D[31:0] IOCZ Data bus. These are bi-directional signal paths used for data transfers between
the processor and external memory. For read operations (when nRW is LOW),
the input data must be valid before the falling edge of MCLK . For write
operations (when nRW is HIGH), the output data will become valid while MCLK
is LOW. At high clock frequencies the data may not become valid until just after
the MCLK  rising edge.

DBE I Data bus enable. When this input is LOW, the data bus, D[31:0]  is put into a high
impedance state (Note 1). The drivers will always be high impedance except
during write operations, and DBE must be driven HIGH in systems which do not
require the data bus for DMA or similar activities.

LOCK OCZ Locked operation. LOCK  is driven HIGH, to signal a “locked” memory access
sequence, and the memory manager should wait until LOCK  goes LOW before
allowing another device to access the memory. LOCK  remains HIGH during the
locked memory sequence. Normally it changes during phase 2 of the bus clock.
The timing can be changed using APE.

MCLK I This is a bus clock input. Bus cycles start and end with falling edges of MCLK .
Hold PCLK  HIGH to use this clock input. See 11.1.1 External input clock:
MCLK or PCLK  on page 11-3 for further details. This signal is provided for
backwards compatibility with previous processors, see PCLK  for the preferred
bus clock input.

 Table 2-1: Signal descriptions
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MSE I Memory request/sequential enable. When this input is LOW, the nMREQ and
SEQ outputs are put into a high impedance state (Note 1).

MAS[1:0] OCZ  Memory Access Size. An output bus used by the processor to indicate the size of
the next data transfer to the external memory system as being a byte, half word or
full 32 bit word in length. MAS[1:0] is valid for both read and write operations.
Normally it changes during phase 2 of the bus clock.The timing can be changed
using APE.

nBLS[3:0] OCZ Not Byte Lane Selects. These signify which bytes of the memory are being
accessed. For a word access all will be LOW. Normally they change during
phase 2 of the bus clock. The timing can be changed using APE.

nFIQ I Not fast interrupt request. If FIQs are enabled, the processor will respond to a
LOW level on this input by taking the FIQ interrupt exception. This is an
asynchronous, level-sensitive input to guarantee that the interrupt has been
taken.,

nIRQ I Not interrupt request. As nFIQ, but with lower priority. If IRQs are enabled, the
processor will respond to a low level on this signal by taking the IRQ interrupt
exception.

nMREQ OCZ Not memory request. A pipelined signal that changes while MCLK  is LOW to
indicate whether or not in the following cycle, the processor will be accessing
external memory. When nMREQ is LOW, the processor will be accessing
external memory in the next bus cycle.

nRESET I Not reset. This is a level sensitive input which is used to start the processor from a
known address. A LOW level will cause the current instruction to terminate
abnormally, and the on-chip cache, MMU, and write buffer to be disabled. When
nRESET is driven HIGH, the processor will re-start from address 0. nRESET
must remain LOW for at least 5 full fast clock cycles or 5 full bus clock cycles
whichever is greater. While nRESET is LOW the processor will perform idle
cycles and nWAIT  must be HIGH.

nRW OCZ Not read/write. When HIGH this signal indicates a processor write operation;
when LOW, a read. Normally it changes during phase 2 of the bus clock. The
timing can be changed using APE.

nTRST I Test interface reset. Note this signal does NOT have an internal pullup resistor.
This signal must be pulsed or driven LOW to achieve normal device operation, in
addition to the normal device reset (nRESET).

nWAIT I Not wait. When LOW this allows extra MCLK  cycles to be inserted in memory
accesses. It must change during the LOW phase of the MCLK  cycle to be
extended.

Name Type Description:

 Table 2-1: Signal descriptions  (Continued)
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PCLK I This is an inverted bus clock input. Bus cycles start and end with rising edges of
PCLK . Hold MCLK  LOW to use this clock input. See 11.1.1 External input
clock: MCLK or PCLK  on page 11-3 for further information. We recommend
using this bus clock input for compatibility with the new generations of
synchronous memory systems (SSRAM, SDRAM) and future ARM
microprocessors. The MCLK  input is provided for compatibility with earlier ARM
processors.

PLLCFG[6:0] I Phase locked loop configuration input. Please refer to 11.3.2 Fast clock from the
output of the PLL  on page 11-7 for further details.

PLLFILT1 Analog filter pin for PLL.

PLLFILT2 Analog filter fast start pin for PLL.

PLLRANGE IOCZ In normal operation, an input which selects the PLL  output frequency range.
Please refer to 11.3.2 Fast clock from the output of the PLL  on page 11-7 for
further details. This pin is also used as an output when the device is in some test
modes. The output driver is guaranteed to be high-impedance if the TESTMODE
pin is LOW.

PLLSLEEP I When HIGH, this puts the PLL  into low power sleep mode. Please refer to 11.5
Low Power Idle and Sleep  on page 11-10 for further details.

PLLVDD VDD supply for analog components in PLL. 1 pin. Should be appropriately
isolated from digital noise on supply.

PLLVSS Ground supply for analog components in PLL. 1 pin.

REFCLK I Clock input which is divided by the prescaler to provide the PLL  reference clock.
REFCLK  can also be configured to a direct source of the internal fast clock,
bypassing the PLL . Please refer to 11.3.2 Fast clock from the output of the
PLL  on page 11-7 and 11.3.3 Fast clock direct (bypassing the PLL)  on page
11-8 for further details.

REFCLKCFG[1:0] IOCZ In normal operation, an input which selects the divide ratio for the PLL  reference
clock prescaler on the REFCLK  input. Please refer to 11.3.2 Fast clock from
the output of the PLL  on page 11-7 for further details. These pins are also used
as an output when the device is in some test modes. The output drivers are
guaranteed to be high-impedance if the TESTMODE pin is LOW.

SEQ OCZ Sequential address. This signal is the inverse of nMREQ, and is provided for
compatibility with existing ARM memory systems.

TESTMODE I This signal must be tied LOW.

TESTOUT[4:0] O This bus should be left unconnected. These outputs will be driven LOW except
when device test features are enabled. They will not be tri-stated, except via the
JTAG test port.

TCK I Test interface reference Clock. This times all the transfers on the JTAG test
interface.

Name Type Description:

 Table 2-1: Signal descriptions  (Continued)
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Notes 1 When output pads are placed in the high impedance state for long periods,
care must be taken to ensure that they do not float to an undefined logic level,
as this can dissipate power, especially in the pads.

2 The input pads on this device are compatible with both CMOS and TTL
signals. The thresholds can be found in Chapter 14, ARM810 DC
Parameters .

Key to signal types:

I Input

OCZ Output, CMOS levels, tristateable

IOCZ Input/output tristateable, CMOS levels

ICK Clock input

TDI I Test interface data input. Note this signal does not have an internal pullup
resistor.

TDO OCZ Test interface data output. Note this signal does not have an internal pullup
resistor.

TMS I Test interface mode select. Note this signal does not have an internal pullup
resistor.

VCC Pad voltage reference. 1 pin is allocated to VCC. This should be tied to the
system power supply, ie. 5V in a TLL system or 3.3V in a 3.3V system. See
Appendix A, Use of the ARM810 in a 5V TTL System .

VDD Positive supply. 15 pins are allocated to VDD in the 144 TQFP package.

VSS Ground supply. 15 pins are allocated to VSS in the 144 TQFP package.

Name Type Description:

 Table 2-1: Signal descriptions  (Continued)
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This chapter describes the programmer’s model.
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3.6 Exceptions 3-8
3.7 Reset 3-12
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3.1 Introduction
The ARM810 supports a variety of operating conditions. Some are controlled by
register bits and are known as the register configurations and others are controlled by
software which are known as operating modes.

The ARM810 programmers model can be split into two distinct segments. The ARM8
CPU core can be configured to a number of hardware configurations and  a number of
operating modes. In adidtion the cache, MMU and branch prediction blocks exterior to
the ARM8 core can also be configured to operate in different ways by software access
to the Coprocessor 15 (CP15) configuration registers. This section concentrates on the
programmer’s model for the ARM8 CPU core. The details of  accessing CP15 for the
configuration of the ARM810 blocks external to the ARM8 core can be found in
Chapter 5, Configuration .

3.2 ARM810 Configuration
The ARM810 Microprocessor incorporates advanced cache, memory management
and branch prediction features.

The ARM810 Cache features are described in detail in Chapter 7, Instruction and
Data Cache (IDC) . The Memory Management Unit features are described in
Chapter 8, Memory Management Unit . The Write Buffer configuration is decribed in
detail in Chapter 9, Write Buffer . The Prefetch Unit features including branch
prediction configuration is documented in Chapter 6, The Prefetch Unit .
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3.3 ARM8 CPU Core Configuration
The ARM8 CPU core  provides 1 register configuration setting which may be changed
while the processor is running and which is discussed below. Please refer to
Chapter 5, Configuration  for details of how to configure the ARM8.

3.3.1 Big and little-endian memory formats (the BIGEND signal)
Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes
0 to 3 hold the first stored word, bytes 4 to 7 the second and so on. ARM810 can treat
words in memory as being stored either in Big Endian or Little Endian format,
depending on the state of the BIGEND input.

The Load/Store instructions are the only ones affected by the endianness.

Little-endian format

In Little-endian format (BIGEND LOW) the lowest numbered byte in a word is
considered the least significant byte of the word, and the highest numbered byte the
most significant. Byte 0 of the memory system should therefore be connected to data
lines 7 through 0.

 Figure 3-1: Little-endian addresses of bytes within words

Big-endian format

In Big-endian format (BIGEND HIGH) the most significant byte of a word is stored at
the lowest numbered byte and the least significant byte at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24.

 Figure 3-2: Big-endian addresses of bytes within words
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Lower Address •  Most significant byte is at lowest address
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3.4 Operating Modes
ARM810 supports byte (8-bit), half-word (16-bit), and word (32-bit) data types.
Instructions are exactly one word long, and must be aligned to four-byte boundaries.
Data operations, such as ADD, are only performed on word quantities. Load and Store
operations are able to transfer bytes, half-words or words.

ARM810 supports seven modes of operation:

Mode Description

User mode (usr) normal program execution state

FIQ mode (fiq) used for fast or higher priority interrupt handling

IRQ mode (irq) used for general-purpose interrupt handling

Supervisor mode (svc) a protected mode for the operating system

System mode (sys) a privileged user mode for the operating system

Abort mode (abt) entered after a data or instruction prefetch abort

Undefined mode (und) entered when an undefined instruction is executed

Mode changes may be made under software control, or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The other modes, known as privileged modes, are entered in order to
service interrupts or exceptions, or to access protected resources.
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3.5 Registers
ARM8 has a total of 37 registers - 31 general-purpose 32-bit registers and six status
registers - but these cannot all be seen at once. The processor mode dictates which
registers are available to the programmer. At any one time, 16 general registers and
one or two status registers are visible. In privileged (non-User) modes, mode-specific
banked registers are switched in. Figure 3-3: Register organisation  on page 3-6
shows which registers are available in each processor mode: each of the banked
registers is marked with a shaded triangle.

In all modes there are 16 directly accessible registers: R0 to R15. All of these except
R15 are general-purpose registers which may be used to hold either data or address
values. Register R15 holds the Program Counter (PC). When read, bits [1:0] of R15 are
zero and bits [31:2] contain the PC. A seventeenth register, the CPSR (Current
Program Status Register), is also accessible. This contains condition code flags and
the current mode bits, and may be thought of as an extension to the PC.

R14 is used as the subroutine link register (LR). This receives a copy of R15 when a
Branch and Link (BL) instruction is executed. At all other times it may be treated as a
general-purpose register. The corresponding banked registers R14_svc, R14_irq,
R14_fiq, R14_abt and R14_und are similarly used to hold the return values of R15
when interrupts and exceptions arise, or when Branch and Link instructions are
executed within exception routines.

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
handlers will not need to save any registers. User, IRQ, Supervisor, Abort and
Undefined each have two banked registers mapped to R13 and R14, allowing each of
these modes to have a private stack pointer (SP) and link register (LR).
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 Figure 3-3: Register organisation

Supervisor, IRQ, Abort and Undefined mode programs which require more than these
two banked registers are expected to save some or all of the caller's registers (R0 to
R12) on their respective stacks. They are then free to use these registers, which they
will restore before returning to the caller.

In addition there are five SPSRs (Saved Program Status Registers) which are loaded
with the CPSR whenever an exception occurs. There is one SPSR for each privileged
(non-User) mode, except System mode.

Note No SPSR exists for User or System modes because no exceptions enter these modes.
Instructions that attempt to access this SPSR should not be executed in User or
System mode.

3.5.1 Program Status Register format
Figure 3-4: Program Status Register (PSR) format  shows the format of the Program
Status Registers.
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Program Status Registers
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 Figure 3-4: Program Status Register (PSR) format

Condition code flags

The N, Z, C and V bits are the condition code flags. These may be changed as a result
of arithmetic and logical operations in the processor, and may be tested by any
instruction to determine whether the instruction is to be executed.

Interrupt disable bits

The I and F bits are the interrupt disable bits. When set, these disable the IRQ and FIQ
interrupts respectively.

Mode bits

The M4, M3, M2, M1 and M0 bits (M[4:0]) are the mode bits. These determine the
mode in which the processor operates. The interpretation of the mode bits is shown in
Table 3-1: The mode bits  on page 3-8. Not all mode bit combinations define a valid
processor mode: you should only use those which are explicitly described.

Control bits

The bottom 8 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as the
control bits. These will change when an exception arises. If the processor is operating
in a privileged mode, they can also be manipulated by software.

Reserved bits

The remaining bits in the PSRs are reserved. When changing a PSR’s flag or control
bits, you must ensure that these unused bits are not changed by using a read-modify-
write scheme. Also, your program should not rely on them containing specific values,
since in future processors they may read as one or zero.

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control
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3.6 Exceptions
Exceptions arise whenever there is a need for the normal flow of program execution to
be broken, so that the processor can be diverted to handle an interrupt from a
peripheral, for example. The processor state immediately prior to handling the
exception must be preserved, to ensure that the original program can be resumed
when the exception routine has completed. It is possible for more than one exception
to arise at the same time.

When handling an exception, ARM810 makes use of the banked registers to save
state. The old PC and CPSR contents are copied into the appropriate R14 and SPSR,
and the PC and the CPSR mode bits are forced to a value which depends on the
exception. Where necessary, the interrupt disable flags are set to prevent otherwise
unmanageable nestings of exceptions; this is detailed in the following sections.

In the case of a re-entrant interrupt handler, R14 and the SPSR should be saved onto
a stack in main memory before the interrupt is re-enabled. When transferring the SPSR
register to and from a stack, it is important to transfer the whole 32-bit value and not
just the flag or control fields. When multiple exceptions arise simultaneously, a fixed
priority determines the order in which they are handled: see 3.6.7 Exception priorities
on page 3-11 for more information.

3.6.1 FIQ
The FIQ (fast interrupt request) exception is externally generated by taking the nFIQ
input LOW. This input can accept asynchronous transitions because the ARM will
always perform the synchronisation. This synchronisation delays the effect of the input
transition on the processor execution flow for one cycle.

FIQ is designed to support a fast or high priority interrupt, and has sufficient private
registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the
CPSR’s F flag (but note that this is not possible from User mode). If the F flag is clear,
ARM810 checks for a LOW level on the FIQ logic output at the end of each instruction
(including cancelled ones), and at the end of any coprocessor busy-wait cycle (allowing
the busy-wait state to be interrupted).

On detecting a FIQ, ARM810:

• saves the address of the next instruction to be executed plus 4 in R14_fiq
• saves the CPSR in SPSR_fiq
• forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR
• forces the PC to fetch the next instruction from the FIQ vector

M[4:0] Mode Accessible Registers

10000 User PC, R14..R0 CPSR

10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

11111 System PC, R14..R0 CPSR

 Table 3-1: The mode bits
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To return normally from FIQ, use SUBS PC,R14_fiq,#4 . This restores both the PC
(from R14) and the CPSR (from SPSR_fiq), and resumes execution of the interrupted
code.

3.6.2 IRQ
The IRQ (interrupt request) exception is externally generated by taking the nIRQ input
LOW. This input can accept asynchronous transitions because the ARM will always
perform the synchronisation. This synchronisation delays the effect of the input
transition on the processor execution flow for one cycle.

IRQ has a lower priority that FIQ and is automatically masked out when a FIQ
sequence is entered. The IRQ exception may be disabled by setting the CPSR’s I flag
(but note that this is not possible from User mode). If the I flag is clear, ARM810 checks
for a LOW level on the IRQ logic output at the end of each instruction (including
cancelled ones) and at the end of any coprocessor busy-wait cycle (allowing the busy-
wait state to be interrupted).

On detecting an IRQ, ARM8:

• saves the address of the next instruction to be executed plus 4 in R14_irq
• saves the CPSR in SPSR_irq
• forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the IRQ vector

To return normally from IRQ, use SUBS PC,R14_irq,#4 . This restores both the PC
(from R14) and the CPSR (from SPSR_irq), and resumes execution of the interrupted
code.

3.6.3 Aborts
Not all requests to the Memory System for Data or Instructions will result in a
successful  completion of the transaction. Such transactions result in an Abort. The rest
of this section describes sources and types of aborts, and what happens once they
occur.

Abort Sources

Aborts can be generated by Store instructions (STR, STM, SWP (for the write part)),
by Data Read instructions (LDR, LDM, SWP (for the read part)) and by Instruction
Prefetching. Please refer to 8.12 MMU Faults and CPU Aborts  on page 8-16 and 8.16
External Aborts  on page 8-23 for further details of Aborts.

Abort types

Aborts are classified as either  Prefetch or  Data Abort types depending upon the
transaction taking place at the time. Each type has its own exception vector to allow
branching to the relevant service routine to deal with them. These exception vectors are
the Prefetch Abort Vector and the Data Abort Vector and their locations are
summarised in 3.6.6 Exception vector summary  on page 3-11.

Prefetch Aborts

If the transaction taking place when the abort happened was an Instruction fetch, then
a Prefetch Abort is indicated. The instruction is marked as invalid, but the abort
exception vector is not taken immediately. Only if the instruction is about to get
executed will the Prefetch Abort exception vector be taken.

For Prefetch Aborts, ARM8:

1 Saves the address of the aborted instruction plus 4 into R14_abt
2 Saves the CPSR into SPSR_abt
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3 Forces M[4:0] to 10111 (Abort Mode) and sets the I bit in the CPSR
4 Forces the PC to fetch the next instruction from the Prefetch Abort vector.

Returning from a Prefetch Abort:  After fixing the reason for the Prefetch Abort, use:
 SUBS PC,R14_abt,#4

This restores both the PC (from R14) and the CPSR (from SPSR_abt), and retries the
instruction.

Data aborts

If the transaction taking place when the abort happened was a Data Access (Read or
Write), then a Data Abort is indicated, and the action depends upon the instruction type
that caused it. In ALL cases, any base register is restored to the value it had before the
instruction started whether or not writeback is specified. In addition:

• The LDR instruction does not overwrite the destination register.
• The SWP Instruction is aborted as though it had not executed, although

externally the read access may have taken place.
• The LDM Instruction ensures that the PC is not overwritten and will restore the

base register such that the instruction can be restarted. All registers up to the
aborting one may have been overwritten, but no further ones will be.

• The STM Instruction will ensure that the base register is restored, and any
stores up to the aborting one will have already been made - the details
depending upon the Memory System itself.

For Data Aborts, ARM8:

1 Saves the address of the instruction which caused the abort plus 8 into
R14_abt

2 Saves the CPSR into SPSR_abt
3 Forces M[4:0] to 10111 (Abort Mode) and sets the I bit in the CPSR
4 Forces the PC to fetch the next instruction from the Data Abort vector.

Returning from a Data Abort:  After fixing the reason for the Data Abort, use:
 SUBS PC,R14_abt,#8

This restores both the PC (from R14) and the CPSR (from SPSR_abt), and retries the
instruction. Note that in the case of LDM, some registers may be re-loaded.

3.6.4 Software interrupt
The software interrupt instruction (SWI) is used for entering Supervisor mode, usually
to request a particular supervisor function. When a SWI is executed, ARM810:

• saves the address of the SWI instruction plus 4 in R14_svc
• saves the CPSR in SPSR_svc
• forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the SWI vector

To return from a SWI, use MOVS PC,R14_svc . This restores the PC (from R14) and
CPSR (from SPSR_svc), and returns to the instruction following the SWI.

3.6.5 Undefined instruction trap
When the ARM810 decodes an instruction bit-pattern that it cannot process, it takes
the undefined instruction trap.

Note Not all non-instruction bit patterns are detected, but such bit patterns will not halt or
corrupt the processor and its state.
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The trap may be used for software emulation of a coprocessor in a system which does
not have the coprocessor hardware (and therefore cannot process), or for general-
purpose instruction set extension by software emulation.

When ARM810 takes the undefined instruction trap, it:

• saves the address of the Undefined instruction plus 4 in R14_und
• saves the CPSR in SPSR_und
• forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR
• forces the PC to fetch the next instruction from the Undefined vector

To return from this trap after servicing or emulating the trapped instruction, use MOVS
PC,R14_und . This restores the PC (from R14) and the CPSR (from SPSR_und)  and
returns to the instruction following the undefined instruction.

3.6.6 Exception vector summary

These are byte addresses, and will normally contain a branch instruction pointing to the
relevant routine.

To enhance FIQ response time, the FIQ routine might reside at 0x1C onwards, and
thereby avoid the need for (and execution time of) a branch instruction.

3.6.7 Exception priorities
When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled.

1 Reset (highest priority)
2 Data Abort
3 FIQ
4 IRQ
5 Prefetch Abort
6 Undefined Instruction, Software interrupt (lowest priority)

Not all of the exceptions can occur at once: Undefined Instruction and Software
Interrupt are mutually exclusive, since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (ie the CPSR’s
F flag is clear), ARM810 enters the data abort handler and then immediately proceeds
to the FIQ vector. A normal return from FIQ will cause the data abort handler to resume

Address Exception Mode on Entry

0x00000000  Reset Supervisor

0x00000004  Undefined instruction Undefined

0x00000008  Software interrupt Supervisor

0x0000000C  Abort (prefetch) Abort

0x00000010  Abort (data) Abort

0x00000014  -- reserved --    --

0x00000018  IRQ IRQ

0x0000001C  FIQ FIQ

 Table 3-2: Exception vectors
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execution. Placing data abort at a higher priority than FIQ is necessary to ensure that
the transfer error does not escape detection. The time for this exception entry should
be added to worst-case FIQ latency calculations.

3.7 Reset
nRESET can be asserted asynchronously. When the nRESET signal goes LOW,
ARM810 abandons the executing instruction. When nRESET goes HIGH again,
ARM810:

• overwrites R14_svc and SPSR_svc (by copying the current values of the PC
and CPSR into them) with undefined values.

• forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR
• forces the PC to fetch the next instruction from the Reset vector
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This chapter details the ARM810 instruction set.

4.1 Summary 4-2
4.2 Reserved Instructions and Usage Restrictions 4-2
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4.4 Branch and Branch with Link (B, BL) 4-5
4.5 Data Processing Instructions 4-7
4.6 PSR Transfer (MRS, MSR) 4-17
4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-23
4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL) 4-25
4.9 Single Data Transfer (LDR, STR) 4-27
4.10 Halfword and Signed Data Transfer 4-34
4.11 Block Data Transfer (LDM, STM) 4-40
4.12 Single Data Swap (SWP) 4-49
4.13 Software Interrupt (SWI) 4-52
4.14 Coprocessor Data Operations (CDP) 4-55
4.15 Coprocessor Data Transfers (LDC, STC) 4-57
4.16 Coprocessor Register Transfers (MRC, MCR) 4-61
4.17 The Instruction Memory Barrier (IMB) Instruction 4-64
4.18 Undefined Instructions 4-67
4.19 Instruction Set Examples 4-68
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4.1 Summary
The ARM810 instruction set is summarized below.

 Figure 4-1: ARM8 instruction set

Note The instruction cycle times given in this section assume that there is no register
interlocking.

4.2 Reserved Instructions and Usage Restrictions
ARM810 enters an Undefined Instruction trap if it encounters an instruction bit pattern
that it does not recognize. However, there are some bit patterns which are not defined,
but which do not cause the Undefined Instruction trap to be taken. These reserved
instructions must not be used, as their action may change in future ARM
implementations, and may differ from previous ARM implementations.

In addition, this datasheet states that some plausible instruction usages must not be
used - particular register combinations for example. In all cases where this is so,
should the rules be broken, the processor will not halt or become damaged in any way,
though its internal state may well be changed.

Please refer to 4.18 Undefined Instructions  on page 4-67 for details of which
instruction bit patterns fall into the Undefined Instruction trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer:
register offset

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer:
immediate offset

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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4.3 The Condition Field
All ARM810 instructions are conditionally executed. This means that their execution
may or may not take place depending on the values of the N, Z, C and V flags in the
CPSR. Figure 4-2: Condition codes  shows the condition encoding.

 Figure 4-2: Condition codes

If the always (AL) condition is specified in an instruction, the instruction will be
executed regardless of the CPSR flags.

Note: A condition field of 1111 is reserved and should not be used. Instructions with such a
condition field may be redefined in future variants of the ARM architecture.

Cond

272831

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always

0

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 0  0  Opcode

21

S Rn Rd Operand 2
Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Coproc Data Transfer

Branch

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

26 25 22

I

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

Cond

0  0  0  0  0  0 SA Rd Rn Rs 1  0  0  1  Rm

1  0  0  1   Rm0  0  0  0RdRn0  0  0  1  0 B  0 0

offsetRdRnB W LI P U0  1

0  1  1 XXXXXXXXXXXXXXXXXXXX 1 XXXX

1  0  0 S W LP U  Rn Register List

1  0  1 L

1  1  0

offset

1  1  1  0 0 CRm

1  1  1  0 LCP Opc

N W LP U  Rn offset CRd  CP#

1  1  1  1

CP Opc  CRn  CRd

 CRn  Rd

 CP#

 CP#

 CP

 CP 1 CRm

ignored by processor
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The assembler treats the absence of a condition code qualifier as though AL had been
specified. If you require a NOP, use MOV R0,R0 .

The other condition codes have meanings as detailed in Figure 4-2: Condition
codes . For example, code 0000 (EQual) causes an instruction to be executed only if
the Z flag is set. This corresponds to the case in which a compare (CMP) instruction
has found its two operands to be equal. If the two operands are different, the compare
will have cleared the Z flag, and the instruction will not be executed.
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4.4 Branch and Branch with Link (B, BL)
A Branch instruction is only executed if the specified condition is true: the various
conditions are defined at the beginning of this chapter. Figure 4-3: Branch
instructions shows the instruction encoding.

 Figure 4-3: Branch instructions

Branch instructions contain a signed two’s complement 24-bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. An instruction can therefore
specify a branch of +/- 32MB. The branch offset must take account of the fact that the
PC is 2 words (8 bytes) ahead of the current instruction.

Branches beyond +/- 32MB must use an offset or an absolute destination that has
been previously loaded into a register. For Branch with Link operations that exceed
32MB, the PC must be saved manually into R14 and the offset added to the PC, or the
absolute destination moved to the PC.

4.4.1 The link bit
Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
In the process, 4 is subtracted from the PC value, so that R14 will contain the address
of the instruction immediately following the BL instruction. The CPSR is not saved with
the PC.

To return from a routine called by Branch with Link, use:

MOV PC,R14 if the link register is still valid.

or

LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by
Rn.

4.4.2 Branch prediction and removal
The ARM8 Prefetch Unit will attempt to remove a Branch instruction before it reaches
the Core. If a Branch is predictable and predicted taken, the Prefetch Unit will start
prefetching from the target address, so removing the Branch altogether if predicted
correctly. For more information, refer to Chapter 6, The Prefetch Unit .

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field
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4.4.3 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc. Future versions of the ARM810 Datasheet
will provide such information.Please refer to Chapter 12, Bus Interface  for timing
details of off-chip accesses.

A Branch (B) or Branch with Link (BL) instruction takes 3 cycles. If optimised by the
Prefetch Unit, a Branch will take fewer cycles—possibly 0—and a Branch with Link will
take a minimum of 1 cycle if taken, and 0 cycles if not taken.

4.4.4 Assembler syntax
Branch instructions have the following syntax:

B{L}{cond} <expression>

where

{L} requests a Branch with Link.

{cond} is one of the two-character mnemonics, shown in
Figure 4-2: Condition codes  on page 4-3. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is the destination address. The assembler calculates the
offset, taking into account that the PC is 8 ahead of the
current instruction.

4.4.5 Examples
hereBAL here ; assembles to 0xEAFFFFFE

; (note effect of PC offset)

B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred

BEQ fred ; if R1 was zero, otherwise continue to next

; instruction

BL sub+ROM ; call subroutine at address computed by

; Assembler

ADDS R1,R1,#1 ; add 1 to register 1, setting CPSR flags

BLCC sub ; on the result, then call subroutine if the

; C flag is clear, which will be

; the case unless R1 held 0xFFFFFFFF
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4.5 Data Processing Instructions
A data processing instruction is only executed if the specified condition is true: the
various conditions are defined at the beginning of this chapter. Figure 4-4: Data
processing instructions  shows the instruction encoding.

 Figure 4-4: Data processing instructions

0000 = AND - Rd:= Op1 AND Op2
0001 = EOR - Rd:= Op1 EOR Op2
0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C - 1
0111 = RSC - Rd:= Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op1 AND Op 2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Cond 0 0 I

011122124272831

Condition Field

OpCode S Rn Rd  Operand 2

25 19 16 152026

Immediate operand

  Rmshift

  Rotate  Imm

0 = Operand 2 is a register

011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7

1 = Operand 2 is an immediate value

Operation Code

Destination register

1st operand register

Set condition codes
0 = do not set condition codes
1 = set condition codes
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The instructions in this class produce a result by performing a specified operation on
one or two operands, where:

• The first operand is always a register (Rn).
• The second operand may be a shifted register (Rm) or a rotated 8-bit

immediate value (Imm) depending on the value of the instruction’s I bit.

The CPSR flags may be preserved or updated as a result of this instruction, depending
on the value of the instruction’s S bit.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the CPSR flags on the result, and therefore always
have the S bit set.

The data processing instructions and their effects are listed in Table 4-1: ARM data
processing instructions .

Assembler
mnemonic OpCode Action Note

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written Rd is ignored and should be 0x0000

TEQ 1001 as EOR, but result is not written Rd is ignored and should be 0x0000

CMP 1010 as SUB, but result is not written Rd is ignored and should be 0x0000

CMN 1011 as ADD, but result is not written Rd is ignored and should be 0x0000

ORR 1100 operand1 OR operand2

MOV 1101 operand2 Rn is ignored and should be 0x0000

BIC 1110 operand1 AND NOT operand2 Bit clear

MVN 1111 NOT operand2 Rn is ignored and should be 0x0000

 Table 4-1: ARM data processing instructions
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4.5.1 Effects on CPSR flags
Data processing operations are classified as logical or arithmetic.

Logical operations

The logical operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the
logical action on all the corresponding bits of the operand or operands to produce the
result.

If the S bit is set (and Rd is not R15 - see below), they affect the CPSR flags as follows:

N is set to the logical value of bit 31 of the result.

Z is set if and only if the result is all zeros.

C is set to the carry out from the shifter (so is unchanged when no shift
operation occurs - see 4.5.2 Shifts  and 4.5.3 Immediate operand
rotates  for the exact details of this).

V is preserved.

Arithmetic operations

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or two’s complement signed).

If the S bit is set (and Rd is not R15), they affect the CPSR flags as follows:

N is set to the value of bit 31 of the result. This indicates a negative
result if the operands are being treated as 2’s complement signed.

Z is set if and only if the result is zero.

C is set to the carry out of bit 31 of the ALU.

V is set if a signed overflow occurs into bit 31 of the result. This can be
ignored if the operands are considered as unsigned, but warns of a
possible error if they are being treated as 2’s complement signed.
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4.5.2 Shifts
When the second operand is a shifted register, the instruction’s Shift field controls the
operation of the  shifter. This indicates the type of shift to be performed (Logical Left
or Right, Arithmetic Right or Rotate Right).

The amount by which the register should be shifted may be contained either in an
immediate field in the instruction, or in the bottom byte of another register (other than
R15). The encoding for the different shift types is shown in Figure 4-5: ARM shift
operations .

 Figure 4-5: ARM shift operations

Instruction-specified shifts

When specified in the instruction, the shift amount is contained in a 5-bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm,
and moves each bit to a more significant position by the specified amount. The least
significant bits of the result are filled with zeros, and the high bits of Rm that do not
map into the result are discarded, with the exception of the least significant discarded
bit. This becomes the shifter carry output, which may be latched into the C bit of the
CPSR when the ALU operation is in the logical class (see  Logical operations  on
page 4-9).

As an example, Figure 4-6: Logical shift left  shows the effect of LSL #5.

 Figure 4-6: Logical shift left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the
CPSR C flag. The contents of Rm are used directly as the second operand.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out
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Logical shift right: A logical shift right (LSR) is similar, but the contents of Rm are
moved to less significant positions in the result. For example, LSR #5 has the effect
shown in Figure 4-7: Logical shift right .

 Figure 4-7:  Logical shift right

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant, as it is the same as logical shift left zero, so the assembler
converts LSR #0 (as well as ASR #0 and ROR #0) into LSL #0, and allows LSR #32
to be specified.

Arithmetic shift right: An arithmetic shift right (ASR) is similar to a logical shift right,
except that the high bits are filled with bit 31 of Rm instead of zeros. This preserves
the sign in two’s complement notation. Figure 4-8: Arithmetic shift right  on page 4-
11 shows the effect of ASR #5.

 Figure 4-8: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, depending on
the value of bit 31 of Rm.

Rotate right: Rotate right (ROR) operations re-use the bits which “overshoot” in a
logical shift right operation by reintroducing them at the high end of the result, in place
of the zeros used to fill the high end in logical shift right operations. To illustrate this,
the effect of ROR #5 is shown in Figure 4-9: Rotate right .

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430
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 Figure 4-9: Rotate right

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the shifter, rotate right extended (RRX). This is a rotate right by
one bit position of the 33-bit quantity formed by appending the CPSR C flag to the most
significant end of the contents of Rm as shown in Figure 4-10: Rotate right
extended .

 Figure 4-10: Rotate right extended

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in
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Register-specified shifts

Only the least significant byte of Rs is used to determine the shift amount. Rs can be
any general register other than R15.

Byte value Description

0 the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter
carry output

1- 31 the shifted result will exactly match that of an instruction specified shift
with the same value and shift operation

32 the result will be a logical extension of the shift described above:

• LSL by 32 has result zero, carry out equal to bit 0 of Rm.
• LSL by more than 32 has result zero, carry out zero.
• LSR by 32 has result zero, carry out equal to bit 31 of Rm.
• LSR by more than 32 has result zero, carry out zero.
• ASR by 32 or more has result filled with and carry out equal

to bit 31 of Rm.
• ROR by 32 has result equal to Rm, carry out equal to bit 31

of Rm.
• ROR by n where n is greater than 32 will give the same result

and carry out as ROR by n-32; therefore repeatedly subtract
32 from n until the amount is in the range 1 to 32

Note Bit 7 of an instruction with a register-controlled shift must be 0: a 1 in this bit will cause
the instruction to be something other than a data processing instruction.

4.5.3 Immediate operand rotates
An immediate operand is constructed by taking the 8-bit immediate in the Imm field,
zero-extending it to 32 bits, and rotating it by twice the value in the Rotate field. This
enables many common constants to be generated, for example all powers of two.

If the value in the Rotate field is zero, the shifter carry out is set to the old value of the
CPSR C flag. Otherwise, the shifter carry out is set to bit 31 of the shifter result, just
as though an ROR had been performed (see Figure 4-9: Rotate right  on page 4-12).

4.5.4 Writing to R15
When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set, the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set, the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which automatically restore both PC and CPSR. This form of instruction must
not be used in User mode or System mode.

Note Bits [1:0] of R15 are set to zero when read from, and ignored when written to.
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4.5.5 Using R15 as an operand
If R15 (the PC) is used as an operand in a data processing instruction and the shift
amount is instruction-specified, the PC value will be the address of the instruction plus
8 bytes.

For any register-controlled shift instructions, neither Rn nor Rm may be R15.

4.5.6 MOV and MVN opcodes
With MOV and MVN opcodes, the Rn field is ignored and should be set to 0000.

4.5.7 TEQ, TST, CMP and CMN opcodes
These instructions do not write the result of their operation but do set flags in the
CPSR. An assembler will always set the S flag for these instructions, even if you do
not specify this in the mnemonic. The Rd field is ignored and should be set to 0000.

In 32-bit modes, the TEQP form of the instruction used in earlier processors should
not be used: the PSR transfer operations (MRS, MSR) must be used instead. Please
refer to Appendix C, 26-bit Operations on ARM810  for information on 26-bit mode
operation.

Note The S bit (bit 20) of these instructions must be a 1; a 0 in this bit will cause the
instruction to be something other than a data processing instruction.

4.5.8 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc. Future versions of the ARM810 Datasheet
will provide such information. Please refer to Chapter 12, Bus Interface  for timing
details of off-chip accesses.

Data Processing instructions vary in the number of incremental cycles taken, as
shown in Table 4-2: Instruction cycle times  on page 4-14.

Description Cycles

Normal  1

If the opcode is one of ADD, ADC, CMP, CMN, RSB, RSC, SUB, SBC
and there is a complex shift (anything other than LSL #0, LSL #1, LSL #2 or LSL #3)

+1

If a register-specified shift is used +1

With PC written and the S bit is clear +2

With PC written and the S bit is set +3

 Table 4-2: Instruction cycle times



Open Access - Preliminary

Instruction Set

4-15ARM810 Data Sheet
ARM DDI 0081E

4.5.9 Assembler syntax
The data processing instructions have the following syntax:

One operand instructions

MOV, MVN

<opcode>{cond}{S} Rd,<Op2>

Instructions that do not produce a result

CMP, CMN, TEQ, TST

<opcode>{cond} Rn,<Op2>

Two operand instructions

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where:

{cond} is a two-character condition mnemonic. The assembler assumes AL
(ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected (implied for
CMP, CMN, TEQ, TST).

Rd is an expression evaluating to a valid register number.

Rn is an expression evaluating to a valid register number.

<Op2> is Rm{,<shift>}  or #<expression>, where <shift>  is one of:

<shiftname> <register>

<shiftname> #<expression> ,
RRX (rotate right one bit with extend).

<shiftname>  can be:
• ASL (ASL is a synonym for LSL)
• LSL
• LSR
• ASR
• ROR

If #<expression>  is used, the assembler will attempt to generate a
rotated immediate 8-bit field to match the expression. If this proves
impossible, it will give an error.

If there is a choice of forms (for example as in #0, which can be
represented using 0 rotated by 0, 2, 4,...30) the assembler will use a
rotation by 0 wherever possible. This affects whether C will be
changed in a logical operation with the S bit set - see 4.5.3 Immediate
operand rotates  on page 4-13. If the rotation is 0, then C won’t be
modified. If the rotation is non-zero, it will be set to the last rotated bit
as shown in Figure 4-9: Rotate right  on page 4-12.

It is also possible to specify the 8-bit immediate and the rotation
amount explicitly, by writing <Op2> as:

#<immediate>,<rotate>
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where:

<immediate> is a number in the range 0-255

<rotate> is an even number in the range 0-30

4.5.10 Examples
ADDEQR2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQSR4,#3 ; test R4 for equality with 3

; (the S is in fact redundant as the

; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in

; the bottom byte of R2, subtract result

; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVSPC,R14 ; return from exception and restore CPSR

; from SPSR_mode

MOVS R0,#1 ; R0 becomes 1; N and Z flags cleared;

; C and V flags unchanged

MOVS R0,#4,2 ; R0 becomes 1 (4 rotated right by 2);

; N, Z and C flags cleared, V flag unchanged
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4.6 PSR Transfer (MRS, MSR)
A PSR Transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter.

These instructions allow access to the CPSR and SPSR registers.

Figure 4-11: MSR (transfer register contents or immediate value to PSR)  on page
4-18 and Figure 4-12: MRS (transfer PSR contents to a register)  on page 4-19
show the encodings.

MRS allows the contents of the CPSR or SPSR_<mode> register to be moved to a
general register. MSR allows the contents of a general register or an immediate value
to be moved to the CPSR or SPSR_<mode> register, with the option of affecting any
subset of bytes in the register, including:

• the flag bits only
• the control bits only
• both the flag and control bits

4.6.1 MSR operands
A register operand is any general-purpose register except R15.

An immediate operand is constructed by taking the 8-bit immediate in the Imm field,
zero-extending it to 32 bits, and rotating it by twice the value in the Rotate field. This
enables many common constants to be generated, for example all powers of two.

4.6.2 Operand restrictions
In User mode, the control bits of the CPSR are protected so that only the condition
code flags can be changed. In other (privileged) modes, it is possible to alter the entire
CPSR.

The mode at the time of execution determines which of the SPSR registers is
accessible: for example, only SPSR_fiq can be accessed when the processor is in FIQ
mode.

R15 cannot be specified as the source or destination register.

Note Do not attempt to access an SPSR in User mode or System mode, since no such
register exists.
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4.6.3 Reserved bits
Only eleven bits of the PSR are defined in ARM810 (N, Z, C, V, I, F and M[4:0]).
The remaining bits (PSR[27:8,5]) are reserved for use in future versions of the
processor.

To ensure the maximum compatibility between ARM810 programs and future
processors, you should observe the following rules:

• Reserved bits must be preserved when changing the value in a PSR.
• Programs must not rely on specific values from reserved bits when checking

the PSR status, since in future processors they may read as one or zero.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register. This involves using the MRS instruction to transfer the appropriate
PSR register to a general register, changing only the relevant bits, and then
transferring the modified value back to the PSR register using the MSR instruction.

The reserved flag bits (bits 27:24) are an exception to this rule; they may have any
values written to them. Any future use of these bits will be compatible with this.
In particular, there is no need to use the read-modify-write strategy on these bits.

 Figure 4-11: MSR (transfer register contents or immediate value to PSR)

Cond 0 0 I 0

011122124 22272831

Destination PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Pd 1 0 Mask 1 1 1 1  Source operand

25 19 16 1523 2026

Immediate operand

  Rm0 0 0 00 0 0 0

  Rotate  Imm

0 = Source operand is a register
011 4 3

Unsigned 8-bit immediate valueRotation applied to Imm

011 8 7
1 = Source operand is an immediate value

Destination bits to change
0001 = Control bits only
1000 = Flag bits only
1001 = Control and Flag bits

Other values reserved
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 Figure 4-12: MRS (transfer PSR contents to a register)

For example, the following sequence performs a mode change:
MRS R0,CPSR ; take a copy of the CPSR

BIC R0,R0,#0x1F ; clear the mode bits

ORR R0,R0,#new_mode ; select new mode

MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. The following example
sets the N, Z, C and V flags:

MSR CPSR_flg,#0xF0000000; set all the flags regardless of

; their previous state (does not

; affect any control bits)

You should not attempt to write an 8-bit immediate value into the whole PSR, since
such an operation cannot preserve the reserved bits.

4.6.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

The MRS instruction takes 1 cycle.

The MSR instruction takes 1 cycle when the flag variant is used, or the destination is
SPSR_<mode>. In all other cases, MSR takes 3 cycles.

Cond 0 0 0 0

0111215162123 22272831

Destination register

Source PSR
0 = CPSR
1 = SPSR_<current mode>

Condition Field

1 Ps   Rd0 0 1 11 1 0 0 0 00 0 0 0 0 00 0
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4.6.5 Assembler syntax
The PSR transfer instructions have the following syntax:

Transfer PSR contents to a register

MRS{cond} Rd,<psr>

Transfer register contents to PSR

MSR{cond} <psr>_<fields>,Rm

Transfer immediate value to PSR

MSR{cond} <psr>_f,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psr> is CPSR or SPSR.

<fields> is one of:

_c to set the control field mask bit (bit 0)

_x to set the extension field mask bit (bit 1)

_s to set the status field mask bit (bit 2)

_f to set the flags field mask bit (bit 3)

#<expression> is used by the assembler to generate a shifted immediate 8-
bit field. If this impossible, the assembler gives an error.
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4.6.6 Previous, deprecated MSR assembler syntax
This section describes the old assembler syntax for MSR instructions. These will still
work on ARM8, but should be replaced by the new syntax as described in section 4.6.5
Assembler syntax  on page 4-20.

Transfer register contents to PSR

MSR{cond} <psrf>,Rm

Transfer immediate value to PSR

MSR{cond} <psrf>,#<expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

Rd and Rm are expressions evaluating to a register number other than
R15.

<psrf> is one of CPSR, CPSR_all, CPSR_flg, CSPR_ctl,
SPSR, SPSR_all, SPSR_flg or SPSR_ctl.

#<expression> is used by the assembler to generate a shifted immediate
8-bit field. If this is impossible, the assembler gives an error.

4.6.7 Examples

User mode

In User mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
; (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]
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System mode

In system mode, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0]  <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

Other privileged modes

In other privileged modes, the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0]  <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_ctl,Rm ; CPSR[7:0] <- Rm[7:0]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0]  <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_ctl,Rm ; SPSR_<mode>[7:0] <- Rm[7:0]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
; (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
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4.7 Multiply and Multiply-Accumulate (MUL, MLA)
A multiply instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-13: Multiply
instructions  shows the instruction encoding.

 Figure 4-13: Multiply instructions

The multiply and multiply-accumulate instructions perform integer multiplication,
optionally accumulating another integer to the product.

Multiply instruction

The multiply instruction (MUL) gives Rd:=Rm*Rs. Operand Rn is ignored, and the Rn
field should be set to zero for compatibility with possible future upgrades to the
instruction set.

Multiply-accumulate

Multiply-accumulate (MLA) gives Rd:=Rm*Rs+Rn. In some circumstances this can
save an explicit ADD instruction.

The result of a signed multiply of 32-bit operands differs from that of an unsigned
multiply of 32-bit operands only in the upper 32 bits - the low 32 bits of signed and
unsigned results are identical. Since MUL and MLA only produce the low 32 bits of a
multiply, they can be used for both signed and unsigned multiplies. Consider the
following:

Operand A Operand B Result

0xFFFFFFF6 0x00000014 0xFFFFFF38

Signed operands:  When the operands are interpreted as signed, A has the value -10
and B has the value 20. The result is -200, which is correctly represented as
0xFFFFFF38.

Unsigned operands: When the operands are interpreted as unsigned, A has the
value 4294967286, B has the value 20 and the result is 85899345720, which is
represented as 0x13FFFFFF38, the least significant 32 bits of which are 0xFFFFFF38.
Again, the representation of the result is correct.

Cond 0 0 0 0 0 0 A S   Rd Rn   Rs 1 0 0 1   Rm

034781112151619202122272831

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field
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4.7.1 Operand restrictions
• The destination register (Rd) must not be the same as Rm.
• R15 must not be used as Rd, Rm, Rn or Rs.

4.7.2 CPSR flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 31 of the result.

Z is set if and only if the result is zero.

C is set to a meaningless value.

V is unaffected.

4.7.3 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

MUL and MLA take from 3 to 6 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 6 (including any accumulate)

Early termination -(0 to 3)

4.7.4 Assembler syntax
The multiply instructions have the following syntax:

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{S} if present, specifies that the CPSR flags will be affected.

Rd,Rm,Rs,Rn are expressions evaluating to a register number other than
R15.

4.7.5 Examples
MUL R1,R2,R3 ; R1:=R2*R3

MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes
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4.8 Multiply Long and Multiply-Accumulate Long (MULL, MLAL)
A multiply long instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. The instruction encoding is
shown in Figure 4-14: Multiply Long instructions .

 Figure 4-14: Multiply Long instructions

The multiply long instructions perform integer multiplication on two 32-bit operands
and produce 64-bit results. Signed and unsigned multiplication each with optional
accumulate give rise to four variations.

Multiply (UMULL and SMULL)

UMULL and SMULL take two 32-bit numbers and multiply them to produce a 64-bit
result of the form RdHi,RdLo := Rm * Rs. The lower 32 bits of the 64-bit result are
written to RdLo, the upper 32 bits of the result are written to RdHi.

Multiply-accumulate (UMLAL and SMLAL)

UMLAL and SMLAL take two 32-bit numbers, multiply them, and add a 64-bit number
to produce a 64-bit result of the form RdHi,RdLo := Rm * Rs + RdHi,RdLo. The lower
32 bits of the 64-bit number to add are read from RdLo. The upper 32 bits of the 64-bit
number to add are read from RdHi. The lower 32 bits of the 64-bit result are written to
RdLo, and the upper 32 bits of the 64-bit result are written to RdHi.

UMULL and UMLAL treat all of their operands as unsigned binary numbers, and write
an unsigned 64-bit result. The SMULL and SMLAL instructions treat all of their
operands as two’s-complement signed numbers and write a two’s-complement signed
64-bit result.

4.8.1 Operand restrictions
• R15 must not be used as an operand or as a destination register.
• RdHi, RdLo and Rm must all specify different registers.

Cond 0 0 0 0 1 U A S  RdHi RdLo   Rs 1 0 0 1   Rm

03478111215161920212223272831

Operand registers
Destination registers
Set condition code

Accumulate

Unsigned

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

0 = unsigned
1 = signed

Condition Field
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4.8.2 CPSR Flags
Setting the CPSR flags is optional, and is controlled by the S bit. If this is set:

N is made equal to bit 63 of the result

Z is set if and only if all 64 bits of the result are zero

C is set to a meaningless value

V is set to a meaningless value

4.8.3 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

MULL and MLAL take from 4 to 7 cycles to execute, depending upon the early
termination, as follows:

Basic cycle count 7 (including any accumulate)

Early termination -(0 to 3)

4.8.4 Assembler syntax
The multiply long instructions have the following syntax:

Unsigned Multiply Long (32 x 32 = 64)

UMULL{cond}{S} RdLo,RdHi,Rm,Rs

Unsigned Multiply and Accumulate Long (32 x 32 + 64 = 64)

UMLAL{cond}{S} RdLo,RdHi,Rm,Rs

Signed Multiply Long (32x 32 = 64)

SMULL{cond}{S} RdLo,RdHi,Rm,Rs

Signed Multiply and Accumulate Long (32 x 32 + 64 = 64)

SMLAL{cond}{S} RdLo,RdHi,Rm,Rs

where

{cond} is a two-character condition mnemonic. The
assembler assumes AL (ALways) if no condition is
specified.

{S} if present, specifies that the CPSR flags will be
affected.

RdLo,RdHi,Rm,Rs are expressions evaluating to a register number
other than R15.

Examples

UMULL R1,R4,R2,R3;; R4,R1:=R2*R3

UMLALS R1,R5,R2,R3;; R5,R1:=R2*R3+R5,R1, also ; ;
; setting condition codes
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4.9 Single Data Transfer (LDR, STR)
A single data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-15: Single
data transfer instructions  shows the instruction encoding.

 Figure 4-15:  Single data transfer instructions

Single data transfer instructions are used to load or store single bytes or words of data.
The memory address used in the transfer is calculated by adding or subtracting an
offset from a base register. If auto-indexing is required, the result may be written back
into the base register.

Cond I Rn Rd

011121516192021242526272831

01 P U B W L Offset

2223

011

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit

Byte/Word bit

0 = no write-back
1 = write address into base

0 = transfer word quantity
1 = transfer byte quantity

Up/Down bit

Pre/Post indexing bit

0 = offset is an immediate value
Immediate offset

Immediate offset

Unsigned 12 bit immediate offset
1 = offset is a register

11 0

shift applied to Rm

34

Condition field

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

Offset register

Shift Rm



Open Access - Preliminary

Instruction Set

4-28 ARM810 Data Sheet
ARM DDI 0081E

4.9.1 Offsets and auto-indexing
The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way).

The offset may be added to (U=1) or subtracted from (U=0) the base register Rn. The
offset modification may be performed either before (pre-indexed, P=1) or after (post-
indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0).

In the case of post-indexed addressing, the write-back bit is redundant, since the old
base value can be retained by setting the offset to zero. Therefore post-indexed data
transfers always write back the modified base. The only use of the W bit in a post-
indexed data transfer is in privileged mode code, where setting the W bit forces non-
privileged mode for the transfer, allowing the operating system to generate a user
address in a system where the memory management hardware makes suitable use of
this facility.

4.9.2 Shifted register offset
The 8 shift control bits are described in 4.5.2 Shifts  on page 4-10. However,
register-specified shift amounts are not available in this instruction class.

4.9.3 Bytes and words
This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM810 register and memory.

The action of LDR(B) and STRB instructions is influenced by the BIGEND control
signal. The two possible configurations are:

• Little-endian
• Big-endian

Little-endian configuration

Byte load (LDRB) expects the data on data bus inputs 7 through 0 if the
supplied address is on a word boundary, on data bus inputs
15 through 8 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-1: Little-endian
addresses of bytes within words  on page 3-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) Any non-word-aligned address will cause the data read to be
rotated into the register so that the addressed byte occupies
bits 0 to 7. This means that halfwords accessed at offsets 0
and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then
required to clear or to sign extend the upper 16 bits. This is
illustrated in Figure 4-16: Little-endian offset addressing
on page 4-29.
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Note The LDRH and LDRSH insrtuctions provide a more efficient
way to load half-words on ARM810. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer  on page 4-34 for further details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is non-
word-aligned, so bit 31 of the register being stored always
appears on data bus output 31.

 Figure 4-16: Little-endian offset addressing

Big-endian configuration

Byte load (LDRB) expects the data on data bus inputs 31 through 24 if the
supplied address is on a word boundary, on data bus inputs
23 through 16 if it is a word address plus one byte, and so on.
The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are
filled with zeros. Please see Figure 3-2: Big-endian
addresses of bytes within words  on page 3-3.

Byte store (STRB) repeats the bottom 8 bits of the source register four times
across data bus outputs 31 through 0. The external memory
system should activate the appropriate byte subsystem to
store the data.

Word load (LDR) will normally generate a word-aligned address. An address
offset of 0 or 2 from a word boundary will cause the data to
be rotated into the register so that the addressed byte
occupies bits 31 through 24. This means that halfwords
accessed at these offsets will be correctly loaded into bits 16
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through 31 of the register. A shift operation is then required to
move (and optionally sign extend) the data into the bottom 16
bits. An address offset of 1 or 3 from a word boundary will
cause the data to be rotated into the register so that the
addressed byte occupies bits 15 through 8.

Note The LDRH and LDRSH instructions provide a more efficient
way to load half-words on ARM810. This method of loading
half-words should therefore only be used if compatibility with
previous ARM processors is required. See 4.10 Halfword
and Signed Data Transfer  on page 4-34 for details.

Word store (STR) will normally generate a word-aligned address. The word
presented to the data bus is not affected if the address is not
word-aligned, so that bit 31 of the register being stored
always appears on data bus output 31.

 Figure 4-17: Big-endian offset addressing
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4.9.4 Use of R15
Do not specify write-back if R15 is the base register (Rn). When using R15 as the base
register, it must be remembered that it contains an address 8 bytes on from the
address of the current instruction.

Do not specify post-indexing (forcing writeback) to Rn when Rn is R15.

Do not specify R15 as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be the address of the instruction plus 8. Note that this is different from
previous ARM processors, which stored the address of the register plus 12.

When R15 is the source register (Rd) of a register store (STR) instruction, or the
destination register (Rd) of a register load (LDR) instruction, the byte form of the
instruction (LDRB or STRB) must not be used, and the address must be word-aligned.

Note Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.

4.9.5 Restrictions on the use of the base register
In the following example, it may sometimes be impossible to calculate the initial value
of R0 after an abort in order to restart the instruction:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should
not be used.

When an LDR instruction specifies (or implies) base writeback, register positions Rd
and Rn should not be the same register.

4.9.6 Data aborts
Please refer to 3.6.3 Aborts  on page 3-9 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDR or LDRB, the destination register (Rd) will not have been
altered.
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4.9.7 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

LDR instructions take 1 cycle:

• +1 cycle if there is a register offset with a shift other than LSL #0, LSL #1, LSL
#2 or LSL #3

• +4 cycles for loading the PC

STR instructions take 1 cycle:

• +1 cycle if there is a register offset (regardless of shift type)

4.9.8 Assembler syntax
The single data transfer instructions have the following syntax:

<LDR|STR>{cond}{B}{T} Rd,<Addr>

where:

LDR loads from memory into a register.

STR stores from a register into memory.

{cond} is a two-character condition mnemonic. If omitted, the assembler
assumes ALways.

{B} if present, specifies byte transfer. If omitted, word transfer is used.

{T} if present, sets the W bit in a post-indexed instruction, forcing non-
privileged mode for the transfer cycle. T is not allowed when a pre-
indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

An <expression>  specifying an address:

The assembler will attempt to address this location by generating an
instruction that uses the PC as a base, along with a corrected
immediate offset. This will be a PC relative, pre-indexed address.
If the address is out of range, an error is generated.
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A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,#<expression>]{!} offset of <expression>  bytes
[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index

register, shifted by <shift>

A post-indexed addressing specification:
[Rn],#<expression> offset of <expression>  bytes
[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index

register, shifted by <shift> .

Rn and Rm are expressions evaluating to a register number. If Rn  is R15, neither
post-indexed addressing nor {!}  should be specified.

<shift> is one of:

<shiftname> #expression

RRX  (rotate right one bit with extend)
<shiftname> is ASL, LSL, LSR, ASR or ROR

(ASL is a synonym for LSL)

{!} if present, sets the W bit so that the base register is written back.

4.9.9 Examples
STR R1,[R2,R4]! ; store R1 at R2+R4 (both are registers)

; and write back address to R2

STR R1,[R2],R4 ; store R1 at R2. Write back R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16.
; Don't write back

LDR R1,[R2,R3,LSL#2]; load R1 from contents of R2+R3*4

LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into R1
; bits 0 - 7, filling bits 8 - 31 with 0s

STR R1,PLACE ; assembler generates PC relative
; offset to address PLACE

•
•

PLACE
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4.10 Halfword and Signed Data Transfer

(LDRH/STRH/LDRSB/LDRSH)
The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4-18: Halfword and signed data transfer with register offset  and
Figure 4-19: Halfword and signed data transfer with immediate offset .

These instructions are used to load or store halfwords of data and also load
sign-extended bytes or halfwords of data. The memory address used in the transfer is
calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is
required.

 Figure 4-18: Halfword and signed data transfer with register offset

Cond 0 0 0 P U 0 W L   Rn Rd 0 0 0 0   Rm

034781112151619202122272831

Offset register

Base register

S H

Source/Destination register

00 = SWP or mutiply instruction
01 = Unsigned halfword

0 = store to memory
1 = load from memory

Load/Store

1 S H 1

10 = Signed byte
11 = Signed halfword

0 = no write-back
1 = write address into base

Write-back

0 = down: subtract offset from
base

Up/Down

1 = up: add offset to base

0 = post: add/subtract offset
Pre/Post indexing

after transfer
1 = pre: add/subtract offset

before transfer

Condition field

232425 56
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 Figure 4-19: Halfword and signed data transfer with immediate offset

4.10.1 Offsets and auto-indexing
The offset from the base may be either an 8-bit unsigned binary immediate value in
the instruction, or a second register. In the case of an immediate value, bits 11:8 (xxxx)
and bits 3:0 (yyyy) combine to form the offset (xxxxyyyy). The offset may be added to
(U=1) or subtracted from (U=0) the base register Rn. The offset modification may be
performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the base
register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base may be
kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and
is always set to zero, since the old base value can be retained if necessary by setting
the offset to zero. Therefore post-indexed data transfers always write back the
modified base.

The Write-back bit must not be set high (W=1) when post-indexed addressing is
selected.

Cond 0 0 0 P U 1 W L   Rn Rd  Offset
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4.10.2 Halfword load and stores
Setting S=0 and H=1 may be used to transfer unsigned halfwords between a register
and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the section below.

4.10.3 Signed byte and halfword loads
The S bit controls the loading of sign-extended data. When S=1 the H bit selects
between bytes (H=0) and halfwords (H=1). The L bit should not be set LOW (Store)
when signed (S=1) operations have been selected.

The LDRSB instruction loads the selected byte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

The LDRSH instruction loads the selected halfword into bits 15 to 0 of the destination
register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the following section.

4.10.4 Endianness and byte/halfword selection

Little-endian configuration

Signed byte load (LDRSB): This load expects data on data bus inputs 7 through to 0 if
the supplied address is on a word boundary, on data bus inputs 15 through to 8 if it is
a word address plus one byte, and so on. The selected byte is placed in the bottom
8 bits of the destination register, and the remaining bits of the register are filled with
the sign bit, the most significant bit of the byte. Please see Figure 3-1: Little-endian
addresses of bytes within words  on page 3-3.

Halfword load (LDRSH or LDRH):  This load expects data on data bus inputs 15 through
to 0 if the supplied address is on a word boundary and on data bus inputs 31 through
to 16 if it is on an odd halfword boundary, (A[1]=1).The supplied address should always
be on a halfword boundary. If bit 0 of the supplied address is HIGH, an unpredictable
value will be loaded. The selected halfword is placed in the bottom 16 bits of the
destination register. For unsigned halfwords (LDRH), the top 16 bits of the register are
filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the
sign bit, the most significant bit of the halfword.

Halfword store (STRH):  This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data.

Note The address must be halfword aligned; if bit 0 of the address is HIGH this causes
unpredictable behaviour.

Big-endian configuration

Signed byte load (LDRSB):  This load (LDRSB) expects data on data bus inputs 31
through to 24 if the supplied address is on a word boundary, on data bus inputs 23
through to 16 if it is a word address plus one byte, and so on. The selected byte is
placed in the bottom 8 bits of the destination register, and the remaining bits of the
register are filled with the sign bit, the most significant bit of the byte. Please see
Figure 3-2: Big-endian addresses of bytes within words  on page 3-3.
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Halfword load (LDRSH or LDRH):  This load expects data on data bus inputs 31 through
to 16 if the supplied address is on a word boundary and on data bus inputs 15 through
to 0 if it is on an odd halfword boundary, (A[1]=1). The supplied address should always
be on a halfword boundary. If bit 0 of the supplied address is HIGH, an unpredictable
value is loaded. The selected halfword is placed in the bottom 16 bits of the destination
register. For unsigned halfwords (LDRH), the top 16 bits of the register are filled with
zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the sign bit, the
most significant bit of the halfword.

Halfword store (STRH):  This store repeats the bottom 16 bits of the source register
twice across the data bus outputs 31 through to 0. The external memory system
should activate the appropriate halfword subsystem to store the data. Note that the
address must be halfword aligned, if bit 0 of the address is HIGH this will cause
unpredictable behaviour.

4.10.5 Use of R15
Do not specify R15 as:

• the register offset (Rm)
• the destination register (Rd) of a load instruction (LDRH, LDRSH, LDRSB)
• the source register (Rd) of a store instruction (STRH, STRSH, STRSB)

Base register

Do not specify either write-back or post-indexing (which forces write-back) if R15 is
specified as the base register (Rn). When using R15 as the base register you must
remember that it contains an address 8 bytes on from the address of the current
instruction.

4.10.6 Restrictions on the use of the base register
Do not specify post-indexed loads and stores where Rm and Rn are the same register,
as they can be impossible to unwind after an abort.

Do not set register positions Rd and Rn to be the same register when a load instruction
specifies (or implies) base write-back.
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4.10.7 Data aborts
Please refer to 3.6.3 Aborts  on page 3-9 for details of aborts in general.

In some situations a transfer to or from an address may cause a memory management
system to generate an abort.

For example, in a system which uses virtual memory, the required data may be absent
from main memory. The memory manager can signal a problem by signalling a Data
Abort to the processor, whereupon the Data Abort trap will be taken. It is up to the
system software to resolve the cause of the problem, after which the instruction can
be restarted and the original program continued.

In all cases, the base register is restored to its original value before the Abort trap is
taken. In the case of an LDRH, LDRSB or LDRSH, the destination register (Rd) will
not have been altered.

4.10.8 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

The cycle times are the same as LDR/STR for all cases of (H, SH, SB).

Load instructions take 1 cycle.

Store instructions take 1 cycle.

4.10.9 Assembler syntax
<LDR|STR>{cond}<H|SH|SB> Rd,<Addr>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See 4.3 The Condition Field  on
page 4-3

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<Addr> is one of:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and an immediate offset to address the
location given by evaluating the expression. This will be a
PC-relative, pre-indexed address. If the address is out of
range, this generates an error.

2 A pre-indexed addressing specification:

[Rn] offset of zero
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[Rn,<#expression>]{!} offset of <expression>
bytes

[Rn,{+/-}Rm]{!} offset of +/- contents of
index register

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm offset of +/- contents of
index register.

Rn and Rm are expressions evaluating to a register number. If Rn  is R15, neither
post-indexed addressing nor {!}  should be specified.

{!} writes back the base register (sets the W bit) if ! is present.

4.10.10 Examples
LDRH R1,[R2,-R3]! ; Load R1 from the contents of the

; halfword address contained in

; R2-R3 (both of which are registers)

; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14

; Don't write back

LDRSB R8,[R2],#-223 ; Load R8 with the sign extended

; contents of the byte address

; contained in R2 and write back R2-223

; to R2

LDRNESH R11,[R0] ; Conditionally load R11 with the sign

; extended contents of the halfword

; address contained in R0.

HERESTRH R5,[(PC, # (FRED-HERE-8)]

. ; Generate PC relative offset to

. ; address FRED. Store the halfword

. ; in R5 at address FRED

.

.

FRED



Open Access - Preliminary

Instruction Set

4-40 ARM810 Data Sheet
ARM DDI 0081E

4.11 Block Data Transfer (LDM, STM)
A block data transfer instruction is only executed if the specified condition is true. The
various conditions are defined at the beginning of this chapter. Figure 4-20: Block
data transfer instructions  shows the instruction encoding.

 Figure 4-20: Block data transfer instructions

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.11.1 The register list
The instruction can cause the transfer of any registers in the current bank (and non-
user mode programs can also transfer to and from the user bank, see below). The
register list is a 16-bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list must not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 8. Note that this is different from previous ARMs which stored the
address of the instruction plus 12 (or 8 if R15 is the only register in the list.)

Cond Rn

015161920212425272831

P U W L

2223

100 S Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Up/Down bit

Pre/Post indexing bit

0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer
1 = pre; add offset before transfer

PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field
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4.11.2 Addressing modes
The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are stored such that the lowest
register is always at the lowermost address in memory, the highest numbered register
is always at the uppermost address, and the others are stored in numerical order
between them.

The register transfers will occur in ascending order. By way of illustration, consider the
transfer of R1, R5 and R7 in the case where Rn=0x1000 and write-back of the modified
base is required (W=1). The figures beginning on page 4-42 show the sequence of
register transfers, the addresses used, and the value of Rn after the instruction has
completed.

In all cases, if write-back of the modified base was not required (W=0), Rn would have
retained its initial value of 0x1000 unless it was also in the transfer list of a load multiple
register instruction, when it would have been overwritten with the loaded value.

4.11.3 Address alignment
The address should normally be a word-aligned quantity. Non-word-aligned addresses
do not affect the instruction: no data rotation occurs (as would happen in LDR.)
However, the bottom 2 bits of the address will appear on A[1:0] and might be
interpreted by the memory system.

4.11.4 Use of the S bit
When the S bit is set in a LDM/STM instruction, its meaning depends on whether R15
is in the transfer list and also on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode other than System mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is an LDM, then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with S bit set (User bank transfer)

The registers to be transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back must not be used when this mechanism is employed.

LDM with R15 not  in transfer list and S bit set (User bank transfer)

The user bank registers are loaded, rather than those in the bank corresponding to the
current mode. This is useful for restoring the user state on process switches. Do not
use base write-back when this mechanism is employed. Also, take care not to read
from a banked register during the following cycle. (Inserting a NOP after the LDM will
ensure safety.)

4.11.5 Use of R15
R15 must not be used as the base register in any LDM or STM instruction.

Note Bits [1:0] of R15 are set to zero when read from, and are ignored when written to.
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4.11.6 Inclusion of the base in the register list
When write-back is specified during an STM, if the base register is the lowest
numbered register in the list, then the original base value is stored. Otherwise the
value stored is not specified and should not be used.

4.11.7 Data aborts
Please refer to 3.6.3 Aborts  on page 3-9 for details of Aborts in general.

When a Data Abort occurs during LDM or STM instructions, further register transfers
are stopped. The base register is always restored to its original value (before the
instruction had executed) regardless of whether writeback was specified or not. As
such, the instruction can always be restarted without any need to adjust the value of
the base register in the Data Abort service routine code.

 Figure 4-21: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn
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 Figure 4-22: Pre-increment addressing

 Figure 4-23: Post-decrement addressing
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 Figure 4-24: Pre-decrement addressing
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4.11.8 Instruction cycle times
Note that the cycle times given here are given for the ARM8 processor core, and do
not give any information about the additional cycles that may be taken as a result of
Cache Misses, MMU Page table walks etc.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

The cycle count for LDM instructions depends on the number of ordinary registers
being loaded (excluding R15), and whether R15 is being loaded.

 The following table shows the basic cycle count for LDM.

The above assumes that the memory system supports double-bandwidth transfer.
If this is not so, then count N cycles for the number of registers being transferred, plus
5 cycles if R15 is loaded, with a minimum of two cycles overall.

A common example of where this might happen in a cached memory system would be
when uncacheable memory is being accessed.

Additional cycles may be incurred if the memory system indicates that it is only able to
transfer one item of data where two were requested. For example, when accessing the
last word in a cache line in a cached memory system.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 5

1 2 6

2 2 6

3 3 7

4 3 7

5 4 8

6 4 8

7 5 9

8 5 9

9 6 10

10 6 10

11 7 11

12 7 11

13 8 12

14 8 12

15 9 13

 Table 4-3: Basic cycle count for LDM
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The following table shows the cycle counts for STM instructions.

Note PC is stored as the address of the current instruction plus 8.

Number of Ordinary
Registers transferred

Cycles when PC (R15)
is not in register list

Cycles when PC (R15)
is in register list

0 - 2

1 2 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8 8 9

9 9 10

10 10 11

11 11 12

12 12 13

13 13 14

14 14 15

15 15 16

 Table 4-4: Basic cycle count for STM
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4.11.9 Assembler syntax
The block data transfer instructions have the following syntax:

<LDM|STM>{cond}<addressmode> Rn{!},<Rlist>{^}

where:

LDM loads from memory to registers.

STM stores from registers to memory.

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<addressmode > is one of <FD|ED|FA|EA|IA|IB|DA|DB>.
Note that <addressmode > is not optional.
(See Table 4-5: Addressing Mode names  on page 4-47)

Rn is an expression evaluating to a register number.

<Rlist> is a list of registers and register ranges enclosed in {} (eg
{R0,R2-R7,R10}).

{!} if present, requests write-back (W=1), otherwise W=0.

{^} if present, sets the S bit. See 4.11.4 Use of the S bit  on page
4-41.

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. These are shown in Table 4-5: Addressing Mode names  on page 4-47.
Key to table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required.

F Full stack (a pre-index has to be done before storing to the stack)

E Empty stack

A Ascending stack (a STM will go up and LDM down)

D Descending stack (a STM will go down and LDM up)

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks:

IA Increment After

IB Increment Before

DA Decrement After

DB Decrement Before

Name Stack Other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

 Table 4-5: Addressing Mode names
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4.11.10 Examples
LDMFDSP!,{R0,R1,R2} ; unstack 3 registers

STMIAR0,{R0-R15} ; save all registers

LDMFDSP!,{R15} ; unstack R15,CPSR unchanged

LDMFDSP!,{R15}^ ; unstack R15, CPSR <- SPSR_mode

; (allowed only in privileged modes)

STMFDR13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMEDSP!,{R0-R3,R14}; save R0 to R3 to use as workspace

; and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMEDSP!,{R0-R3,R15}; restore workspace and return

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Name Stack Other L bit P bit U bit

 Table 4-5: Addressing Mode names
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4.12 Single Data Swap (SWP)
A data swap instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-25: Swap instruction
shows the instruction encoding.

 Figure 4-25: Swap instruction

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. It is implemented as a memory read followed by a memory write
which are “locked” together. The processor cannot be interrupted until both operations
have completed, and the memory manager is warned to treat them as inseparable.

This class of instruction is particularly useful for implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. It then writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

Both the read and the write operations result in external accesses to main memory
regardless of whether the cache hits or misses. In the case of a cache hit during the
write operation, the cache line is updated with the new value and is not marked as dirty.

Swap Read operation:

This performs a single word or byte read that always goes to the external bus, leaving
the bus locked for the subsequent write.

Swap Write operation:

This performs a single word or byte write that always goes to the external bus as an
unbuffered write. If the write is a cache hit, the cache data is updated and the dirty bit
is left unchanged.

The LOCK  signal on the external interface is used to signal to the external memory
manager that the read and write operations of the swap are locked together and should
be allowed to complete without interruption; see Chapter 12, Bus Interface  for further

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity
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details. This operation is important in multi-processor systems, where the swap
instruction is the only indivisible operation which may be used to implement
semaphores.

4.12.1 Bytes and words
This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM810 register and memory. The SWP instruction is implemented as a LDR followed
by a STR and the action of these is as described in 4.9 Single Data Transfer (LDR,
STR) on page 4-27. In particular, the description of big and little-endian configuration
applies to the SWP instruction. Note that there is no halfword SWP.

4.12.2 Use of R15
R15 must not be used as an operand (Rd, Rn or Rm) in a SWP instruction.

4.12.3 Data aborts
Please refer to 3.6.3 Aborts  on page 3-9 for details of Aborts in general.

In some situations, a transfer to or from an address may cause the memory
management system to generate an Abort.

If the read operation is aborted, the abort will be returned to ARM8, the write will not
take place and the locked indication will be removed from the external bus.

If the read operation succeeds and the write operation is aborted, the abort will be
returned to ARM8 and the cache entry will be left with the updated (written) data value.
The line will not be invalidated in the cache—this could be done by the abort handler
if necessary.

4.12.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses.

SWP instructions take 2 cycles.
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4.12.5 Assembler syntax
The SWP instruction has the following syntax:

<SWP>{cond}{B} Rd,Rm,[Rn]

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

{B} specifies byte transfer. If omitted, word transfer is used.

Rd,Rm,Rn are expressions evaluating to valid register numbers.

4.12.6 Examples
SWP R0,R1,[R2] ; load R0 with the word addressed by R2,

; and store R1 at R2

SWPBR2,R3,[R4] ; load R2 with the byte addressed by R4,

; and store bits 0 to 7 of R3 at R4

SWPEQR0,R0,[R1] ; conditionally swap the contents of the

; word addressed by R1 with R0
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4.13 Software Interrupt (SWI)
A SWI instruction is only executed if the specified condition is true. The various
conditions are defined at the beginning of this chapter. Figure 4-26: Software
interrupt instruction  shows the instruction encoding.

 Figure 4-26: Software interrupt instruction

The software interrupt is used to enter Supervisor mode in a controlled manner. It
causes the software interrupt trap to be taken, which effects the mode change. The PC
is then forced to the SWI vector and the CPSR is saved in SPSR_svc. See 3.6.4
Software interrupt  on page 3-10 for more details.

If the SWI vector address is suitably protected (by external memory management
hardware) from modification by the user, a fully protected operating system may be
constructed.

4.13.1 Return from the supervisor
The PC is saved in R14_svc and the CPSR in SPSR_svc upon entering the software
interrupt trap, with the PC adjusted to point to the word after the SWI instruction. MOVS
PC,R14_svc  will return to the calling program and restore the CPSR.

The link mechanism is not re-entrant, so if the supervisor code wishes to use software
interrupts within itself, it must first save a copy of the return address and SPSR.

4.13.2 Comment field
The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions. This is commonly referred to as the “SWI
number”.

Cond

272831

Condition field

1 1 1 1

2324 0

The “SWI number” comment field (ignored by processor)
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4.13.3 Architecturally defined SWIs
The ARM Architecture V4 reserves SWI numbers 0xF00000 to 0xFFFFFF inclusive for
current and future Architecturally Defined SWI functions. These SWI numbers should
not be used for functions other than those defined by ARM. Please see 4.17 The
Instruction Memory Barrier (IMB) Instruction  on page 4-64 for examples of two
such definitions.

Architecturally defined SWI functions are used to provide a well-defined interface
between code which is:

• independent of the ARM processor implementation on which it is running, and
• specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with a function that is available on
all processor implementations via the SWI interface, and which may be accessed by
privileged and, where appropriate, non-priviledged (User mode) code.

The Architecturally defined SWI instructions must be implemented in the SWI handler
using processor specific code sequences supplied by ARM. Please refer to Appendix
E, Implementing the Instruction Memory Barrier Instruction  for details.

4.13.4 Instruction cycle times
Please note that the cycle times given here are given for the ARM8 processor core,
and do not give any information about the additional cycles that may be taken as a
result of Cache Misses, MMU Page table walks etc. Future versions of the ARM810
Datasheet will provide such information.

Please refer to Chapter 12, Bus Interface  for timing details of off-chip accesses

SWI instructions take 4 cycles to execute.

4.13.5 Assembler syntax
The SWI instruction has the following syntax:

SWI{cond} <expression>

where:

{cond} is a two-character condition mnemonic. The assembler
assumes AL (ALways) if no condition is specified.

<expression> is evaluated and placed in the comment field (which is
ignored by ARM810).

4.13.6 Examples
SWI ReadC ; get next character from read stream

SWI WriteI+”k” ; output a ”k” to the write stream

SWINE0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists at the SWI vector
address, for instance:

B Supervisor ; SWI entry point

.

.

EntryTable ; addresses of supervisor routines
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DCD ZeroRtn

DCD ReadCRtn

DCD WriteIRtn

.

.

Zero EQU  0

ReadC EQU  256

WriteI EQU  512

Supervisor

; SWI has routine required in bits 8-23 and data (if any)
; in bits 0-7.

; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and
; return address

LDR R0,[R14,#-4] ; get SWI instruction

BIC R0,R0,#0xFF000000; clear top 8 bits

MOV R1,R0,LSR#8 ; get routine offset

ADR R2,EntryTable ; get entry table start address

LDR R15,[R2,R1,LSL#2]; branch to appropriate routine

WriteIRtn ; enter with character in
; R0 bits 0-7

.

.

LDMFD R13,{R0-R2,R15}^; restore workspace and return

; restoring processor mode
; and flags

Note ADR is a directive that instructs the assembler to use an ADD or SUB instruction to
create the address of a label, so in the above instance

ADR R2,EntryTable

is equivalent to
SUB R2,R15,#{PC}+8-EntryTable
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4.14 Coprocessor Data Operations (CDP)
ARM810 will bounce all CDP instructions , forcing them to take the Undefined
Instruction trap. The coprocessor instruction may then be emulated.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in
Figure 4-27: Coprocessor data operation instruction .

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to the ARM810, and it may not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity, allowing the
coprocessor and the ARM810 to perform independent tasks in parallel.

 Figure 4-27: Coprocessor data operation instruction

4.14.1 The coprocessor fields
Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are
used by coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor must ignore any instruction which does not contain
its number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

4.14.2 Instruction cycle times
All CDP instructions must be emulated in software: the number of cycles taken will
depend on the coprocessor support software.

4.14.3 Assembler syntax
CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

Cond

011121516192024272831 23

CRd CP#

78

1110 CP Opc CRn CP 0 CRm

5 4 3

Coprocessor number 

Condition field

Coprocessor information 
Coprocessor operand register 

Coprocessor destination register 
Coprocessor operand register 
Coprocessor operation code 
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where:

{cond} two character condition mnemonic, see Figure 4-2:
Condition codes  on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn  and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.14.4 Examples
CDP p1,10,c1,c2,c3; request coproc 1 to do operation 10

; on CR2 and CR3, and put the result in

; CR1

CDPEQp2,5,c1,c2,c3,2; if Z flag is set request coproc 2 to

; do operation 5 (type 2) on CR2 and

; CR3, and put the result in CR1
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4.15 Coprocessor Data Transfers (LDC, STC)
ARM810 will bounce all LDC and STC instructions, forcing them to take the Undefined
Instruction trap. The coprocessor instruction may then be emulated.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. The processor is responsible for
supplying the memory address, and the coprocessor supplies or accepts the data and
controls the number of words transferred.

 Figure 4-28: Coprocessor data transfer instructions

Cond Rn

0111215161920212425272831

P U W L

2223

110 N CRd CP# Offset

78

Coprocessor number 
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register 

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer
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4.15.1 The coprocessor fields
The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be transferred),
and the N bit is used to choose one of two transfer length options. For instance N=0
could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

4.15.2 Addressing modes
The processor is responsible for providing the address used by the memory system
for the transfer, and the addressing modes available are a subset of those used in
single data transfer instructions. Note, however, that for coprocessor data transfers the
immediate offsets are 8 bits wide and specify word offsets, whereas for single data
transfers they are 12 bits wide and specify byte offsets.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified
base value may be overwritten back into the base register (if W=1), or the old value of
the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each subsequent
transfer. Instructions where P=0 and W=0 are reserved, and must not be used.

4.15.3 Address alignment
The base address should normally be a word aligned quantity. The bottom 2 bits of the
address will appear on A[1:0]  and might be interpreted by the memory system.

4.15.4 Use of R15
If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 shall not be specified.

4.15.5 Data aborts
If the address is legal but the memory manager generates an abort, the data abort trap
is taken. The base register is restored to its original value, and all other processor state
are preserved. Any coprocessor emulation is partly responsible for ensuring that the
data transfer can restart after the cause of the abort is resolved, and must ensure that
any subsequent actions it undertakes can be repeated when the instruction is retried.

4.15.6 Instruction cycle times
All LDC and STC instructions must be emulated in software: the number of cycles
taken will depend on the coprocessor support software.
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4.15.7 Assembler syntax
<LDC|STC>{cond}{L} p#,cd,<Addr>

where:

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present, perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic. See Figure 4-2: Condition
codes  on page 4-3.

p# the unique number of the required coprocessor

cd expression evaluating to a valid coprocessor register number that is
placed in the CRd field

<Addr>  can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the
PC as a base and a corrected immediate offset to address the
location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an
error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression>  bytes
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3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>  bytes

{!} write back the base register (set
the W bit) if !  is present

Rn expression evaluating to a valid
ARM810 register number

4.15.8 Examples
LDC p1,c2,table ; load c2 of coproc 1 from address

; table, using a PC relative address.
STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2

; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words)

Note Though the address offset is expressed in bytes, the instruction offset field is in words.
The assembler will adjust the offset appropriately.
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4.16 Coprocessor Register Transfers (MRC, MCR)
ARM810 has only one internal coprocessor; CP15, the system control coprocessor.
The MRC and MCR instructions are used to transfer register contents between the
core and the coprocessor. Please refer to Chapter 5, Configuration  for details of the
register arrangement and operations.

The instruction is only executed if the condition is true. The various conditions are
defined at the beginning of this chapter. The instruction encoding is shown in Figure
4-29: Coprocessor register transfer instructions .

This class of instruction is used to communicate information directly between ARM810
and a coprocessor. An example of a coprocessor to processor register transfer (MRC)
instruction would be a FIX of a floating point value held in a coprocessor, where the
floating point number is converted into a 32 bit integer within the coprocessor, and the
result is then transferred to a processor register. A FLOAT of a 32-bit value in a
processor register into a floating point value within the coprocessor illustrates the use
of a processor register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the processor CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

 Figure 4-29: Coprocessor register transfer instructions

21

Cond

011121516192024272831 23

CP#

78

1110 CRn CP CRm

5 4 3

1LCP Opc Rd

Coprocessor number 
Coprocessor information 
Coprocessor operand register 

Coprocessor operation mode 
Condition field

Load/Store bit
0 = Store to Co-Processor
1 = Load from Co-Processor

ARM source/destination register
Coprocessor source/destination register 
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4.16.1 The coprocessor fields
The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon. The CP Opc, CRn, CP and CRm fields are used only by the
coprocessor, and the interpretation presented here is derived from convention only.
Other interpretations are allowed where the coprocessor functionality is incompatible
with this one. The conventional interpretation is that the CP Opc and CP fields specify
the operation the coprocessor is required to perform, CRn is the coprocessor register
which is the source or destination of the transferred information, and CRm is a second
coprocessor register which may be involved in some way which depends on the
particular operation specified.

4.16.2 Transfers from R15
Do not specify a coprocessor register transfer from ARM810 with R15 as the source
register.

4.16.3 Transfers to R15
When a coprocessor register transfer to ARM810 has R15 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and other
CPSR bits are unaffected by the transfer.

4.16.4 Instruction cycle times
Both the MRC and MCR instructions take 1 cycle to execute, provided that the
coprocessor does not “busy-wait” them.

4.16.5 Assembler syntax
<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

where:

MRC move from coprocessor to ARM810 register (L=1)

MCR move from ARM810 register to coprocessor (L=0)

{cond} two-character condition mnemonic, see Figure 4-2:
Condition codes  on page 4-3

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM810 register
number

cn  and cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.16.6 Examples
MRC p2,5,R3,c5,c6 ; request coproc 2 to perform operation 5

; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3

MCR p6,0,R4,c6,c7 ; request coproc 6 to perform operation 0
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; on R4 and place the result in c6, in a
; way that may be influenced by c7

MRCEQ p3,9,R3,c5,c6,2 ; conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3



Open Access - Preliminary

Instruction Set

4-64 ARM810 Data Sheet
ARM DDI 0081E

4.17 The Instruction Memory Barrier (IMB) Instruction
An Instruction Memory Barrier (IMB) Instruction is used to ensure that correct
instruction flow occurs after instruction memory locations are altered in any way - by
self-modifying code for example. The recommended implementation of the IMB
instructions is via an architecturally defined SWI function (see 4.13 Software
Interrupt (SWI)  on page 4-52). The instruction encoding for the recommended IMB
instruction implementations is shown below:

 Figure 4-30: IMB instruction

 Figure 4-31: IMBRange instruction

IMBRange : Registers R0 and R1 contain the Range of addresses on entry to the SWI.
R0 is the lower (inclusive) address and R1 is the upper address (not included in the
range).

4.17.1 Use
During the normal operation of ARM8, the Prefetch Unit (PU) reads instructions ahead
of the core in order to attempt to remove branches. It does this by predicting whether
or not the branches are taken and then prefetching from the predicted address.

If a program changes the contents of memory with the intention of executing the new
contents as new instructions, then any prefetched instructions and/or other stored
information about instructions in the PU may be out of date because the instructions
concerned have been overwritten. Thus the PU holds the wrong instructions; if passed
to the execution unit they would cause unintentional behaviour.

In order to prevent such problems, an IMB instruction must be used between changing
the contents of memory and executing the new contents to ensure that any stored
instructions are flushed from the PU. The choice of IMB Instruction (IMB or IMBRange)
depends upon the amount of code changed.

The IMB Instruction flushes all stored information about the instruction stream.

The IMBRange Instruction flushed all stored information about instructions at
addresses in the range specified.

Please refer to Appendix E, Implementing the Instruction Memory Barrier
Instruction  for further details of the IMB implementation and use.

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00000

Cond

272831

Condition field

1 1 1 1

2324 0

0xF00001
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4.17.2 Assember syntax
SWI{cond} IMB ; Where IMB = 0xF00000

; code that loads R0 and R1 with Range addresses

SWI{cond} IMBRange ; Where IMBRange = 0xF00001

4.17.3 Examples

Loading code from disc

Code that loads a program from a disc, and then branches to the entry point of that
program, should execute an IMB instruction between loading the program and trying
to execute it.

IMB EQU 0xF00000

.

.

; code that loads program from disc

.

.

SWI IMB

.

.

MOV PC, entry_point_of_loaded_program

.

.

Running BitBlt code

“Compiled BitBlt” routines optimise large copy operations by constructing and
executing a copying loop which has been optimised for the exact operation wanted.

When writing such a routine an IMB is needed between the code that constructs the
loop and the actual execution of the constructed loop.

IMBRange EQU 0xF00001
.
.
; code that constructs loop code
; load R0 with start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange
; start of constructed loop code
.
.
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Self-decompressing code

When writing a self-decompressing program, an IMB should be issued after the
routine which decompresses the bulk of the code and before the decompressed code
starts to be executed.

IMB EQU 0xF00000

.

.

; copy and decompress bulk of code

SWI IMB

; start of decompressed code
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4.18 Undefined Instructions
This section shows the instruction bit patterns that will cause the Undefined Instruction
trap to be taken if ARM810 attempts to execute them. This vector location is defined
in 3.6.6 Exception vector summary  on page 3-11. There are a number of such bit
pattern classes, and these can be used to cause unimplemented instructions (for
example LDC) to be emulated through the Undefined Instruction trap service routine
code:

Class A Undefined instructions in previous ARM processor implementations

Class B Unallocated MSR/MRS-like instructions

Class C Unallocated Multiply-like instructions

Class D Unallocated SWP-like instructions

Class E Unallocated STRH/LDRH/LDRSH/LDRSB-like instructions

Note Some or all of Classes B through E may not fall into the Undefined Instruction trap if
further implementation restrictions dictate this. ARM reserves the right to make these
decisions as necessary.

The Undefined Instruction trap is taken:

• if the condition specified by Cond is met and the instruction bit pattern is in
Table 4-6: Bit patterns for the undefined instruction trap

or

• by all coprocessor instructions whose condition is met and which are bounced
by any coprocessor. For ARM810, the coprocessor interface must bounce all
CDP, LDC and STC instructions

4.18.1 Assembler syntax
At present the assembler has no mnemonics for generating Undefined Instruction
classes A through to E.

Class Instruction Bit Pattern Notes

A Cond 011x xxxx xxxx xxxx xxxx xxx1 xxxx

B Cond
Cond
Cond

0001
0001
0011

0xx0
0xx0
0x00

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

xxxx
xxxx
xxxx

yyy0
0xx1
xxxx

xxxx
xxxx
xxxx

yyy != 000

C Cond 0000 01xx xxxx xxxx xxxx 1001 xxxx

D Cond 0001 yyyy xxxx xxxx xxxx 1001 xxxx yyyy !=0000 or 0100

E Cond
Cond

0000
000x

xx1x
xxx0

xxxx
xxxx

xxxx
xxxx

xxxx
xxxx

1yy1
11x1

xxxx
xxxx

yy !=00

 Table 4-6: Bit patterns for the undefined instruction trap
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4.19 Instruction Set Examples
The following examples show ways in which the basic ARM810 instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some): mostly they just save code.

4.19.1 Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; if Rn=p OR Rm=q THEN
BEQ Label ; GOTO Label
CMP Rm,#q
BEQ Label

can be replaced by :
CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied
BEQ Label ; try other test

Absolute value
TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if

; necessary

Multiplication by 4, 5 or 6 (run time)
MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

Combining discrete and range tests
TEQ Rc,#127 ; discrete test
CMPNE Rc,#" "-1 ; range test
MOVLS Rc,#"." ; IF   Rc<=" " OR Rc=ASCII(127)

; THEN Rc:="."

Division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier.

A short general purpose divide routine follows.

; Unsigned divide of r1 by r0
; Returns quotient in r0, remainder in r1
; Destroys r2, r3

MOV     r3, #0
MOVS    r2, r0
BEQ     |__rt_div0| ; jump to divide-by-zero

; error handler
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; justification stage shifts r2 left 1 bit at a time
; until r2 > (r1/2)
u_loop

CMP     r2, r1, LSR #1
MOVLS   r2, r2, LSL #1
BCC     u_loop

; now division proper can start
u_loop2

CMP     r1, r2 ; perform divide step
ADC     r3, r3, r3
SUBCS   r1, r1, r2
TEQ     r2, r0              ; all done yet?
MOVNE   r2, r2, LSR #1
BNE     u_loop2
MOV     r0, r3

4.19.2 Multiply overflow detection in the ARM810

Overflow in unsigned multiply with a 32 bit result
UMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply with a 32 bit result
SMULL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 32 bit result
UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

Overflow in signed multiply accumulate with a 32 bit result
SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

Overflow in unsigned multiply accumulate with a 64 bit result
SMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADCS Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;2 cycles and 2 registers

Overflow in signed multiply accumulate with a 64 bit result
UMULL R1,Rh,Rm,Rn ;4 to 7 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADCS Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;2 cycles and 2 registers
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Note Overflow cannot occur in signed and unsigned multiply with a 64-bit result, so overflow
checking is not applicable.

4.19.3 Pseudo random binary sequence generator
It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be of maximal length (ie. 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 EOR bit 20, shift left the 33 bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (ie. 32 bits).

; enter with seed in Ra (32 bits),

; Rb (1 bit in Rb lsb), uses Rc

TST Rb,Rb,LSR#1 ; top bit into carry

MOVSRc,Ra,RRX ; 33 bit rotate right

ADC Rb,Rb,Rb ; carry into lsb of Rb

EOR Rc,Rc,Ra,LSL#12 ; (involved!)

EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

;

; new seed in Ra, Rb as before

4.19.4 Multiplication by constant using shifts
1 Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

2 Multiplication by 2^n+1 (3,5,9,17..)
ADD Ra,Ra,Ra,LSL #n

3 Multiplication by 2^n-1 (3,7,15..)
RSB Ra,Ra,Ra,LSL #n

4 Multiplication by 6
ADD Ra,Ra,Ra,LSL #1; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

5 Multiply by 10 and add in extra number
ADD Ra,Ra,Ra,LSL#2 ; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next

; digit
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6 General recursive method for Rb := Ra*C, C a constant:
a) If C even, say C = 2^n*D, D odd:

D=1: MOV   Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:
D=1: ADD   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:
D=1: RSB   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

4.19.5 Loading a word from an unknown alignment
; enter with address in Ra (32 bits)

; uses Rb, Rc; result in Rd.

; Note d must be less than c e.g. 0,1

;

BIC Rb,Ra,#3 ; get word-aligned address

LDMIARb,{Rd,Rc} ; get 64 bits containing answer

AND Rb,Ra,#3 ; correction factor in bytes

MOVSRb,Rb,LSL#3 ; ...now in bits and test if aligned

MOVNERd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned) for little-endian

; operations (see note below)

RSBNERb,Rb,#32 ; get other shift amount

ORRNERd,Rd,Rc,LSL Rb; combine two halves to get result

; for little-endian operation (see note

; below)

Note: for Big-endian operation replace the first “LSR” with “LSL” and the final “LSL” by
“LSR”.
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This chapter describes the configuration.

5.1 ARM810 System Control Coprocessor (CP15) Register Map 5-3

Configuration5
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The operation and configuration of ARM810 is controlled both directly via coprocessor
instructions and indirectly via the Memory Management Page tables. The coprocessor
instructions manipulate a number of on-chip registers which control the configuration
of the Cache, write buffer, MMU and a number of other configuration options.
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5.1 ARM810 System Control Coprocessor (CP15) Register Map

5.1.1 CP15 registers
CP15 defines 16 registers. Table 5-1: CP15 register summary  on page 5-4 shows
which registers are defined for reading and which for writing. All CP15 register bits
which are defined and contain state are set to zero by Reset.

CP15 registers can only be accessed with MRC and MCR instructions in a Privileged
mode.  The instruction bit pattern of the MCR and MRC instructions is shown below:

 Figure 5-1: MRC, MCR bit pattern

CDP, LDC and STC instructions, along with unprivileged MRC and MCR instructions
to CP15 will cause the undefined instruction trap to be taken. The CRn field of MRC
and MCR instructions specify the coprocessor register to access. The CRm field and
opcode_2 field are used to specify a particular action when addressing some registers.

Attempting to read from a register which is not defined for reading, or writing to a
register which is not defined for writing will cause the instruction to take the undefined
instruction trap. See 5.1.2 Architectural Compliance of ARM810 CP15  on page 5-
12. In all instructions which access CP15:

• the opcode_1 field SHOULD BE ZERO
• the opcode_2 and CRm fields SHOULD BE ZERO except when accessing

registers 7 and 8, when the values specified below should be used to select
the desired Cache and TLB operations. Using a value other than those
specified below for opcode_2 and CRm when accessing registers 7 and 8, or
other than zero when accessing other registers, will cause ARM810 to take
the undefined instruction trap. See 5.1.2 Architectural Compliance of
ARM810 CP15 on page 5-12.

Throughout this section the following terms and abbreviations are used:

UNPREDICTABLE UNP If specified for reads: the data returned when
reading from this location is unpredictable - it
could have any value.
If specified for writes: writing to this location
will cause unpredictable behaviour or an
unpredictable change in device configuration.

UNDEFINED UND An instruction that accesses CP15 in the
manner indicated will take the undefined
instruction trap.

SHOULD BE ZERO SBZ When writing to this location, all bits of this field
should be 0.

Cond

272831

1 1 1 0

2324 0

opcode_1 L CRn Rd 1 1 1 1 opcode_2 1 Crm

21 20 19 16 15 12 11 8 7 5 4 3
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In all cases, reading from, or writing any data values to any CP15 registers, including
those fields specified as UNPREDICTABLE or SHOULD BE ZERO will not cause any
permanent damage to the ARM810.

Register 0: ID register

Reading from CP15 register 0 returns the value 0x4101810x. The CRm and opcode_2
fields SHOULD BE ZERO when reading CP15 register 0.

 Figure 5-2: ID register read

Writing to CP15 register 0 is UNPREDICTABLE.

 Figure 5-3: ID register write

Register Reads Writes

0 ID Register UNDEFINED

1 Control Control

2 Translation Table Base Translation Table Base

3 Domain Access Control Domain Access Control

4 UNDEFINED UNDEFINED

5 Fault Status Fault Status

6 Fault Address Fault Address

7 UNDEFINED Cache operations

8 UNDEFINED TLB operations

9 Cache Lock-Down Cache Lock-Down

10 TLB Lock-Down TLB Lock-Down

11 to 14 UNDEFINED UNDEFINED

15 Clock and Test Configuration Clock and Test Configuration

 Table 5-1: CP15 register summary

0 1 0 0

272831

0 0 0 1

2324 0

0 0 0 0

20 19 16 15 12 11 8 7 4 3

0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 Revision

31 0

UNP
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Register 1: Control register

Reading from CP15 register 1 reads the control bits. The CRm and opcode_2 fields
SHOULD BE ZERO when reading CP15 register 1.

 Figure 5-4:  Register 1 read

Writing to CP15 register 1 sets the control bits. The CRm and opcode_2 fields
SHOULD BE ZERO when writing CP15 register 1.

 Figure 5-5: Register 1 write

All defined control bits are set to zero on reset. The control bits have the following
functions:

M Bit 0 MMU Enable/Disable
0 = Memory Management Unit (MMU) disabled
1 = Memory Management Unit (MMU) enabled

A Bit 1 Alignment Fault Enable/Disable
0 = Address Alignment Fault Checking disabled
1 = Address Alignment Fault Checking enabled

C Bit 2 Cache Enable/Disable
0 = Instruction and/or Data Cache (IDC) disabled
1 = Instruction and/or Data Cache (IDC) enabled

W Bit 3 Write buffer Enable/Disable
0 = Write Buffer disabled
1 = Write Buffer enabled

P Bit 4 When read returns one, and when written is ignored.

D Bit 5 When read returns one, and when written is ignored.

L Bit 6 When read returns one, and when written is ignored.

B Bit 7 Big-endian/Little-endian
0 = Little-endian operation
1 = Big-endian operation

S Bit 8 System protection
This bit modifies the MMU protection system.

R Bit 9 ROM protection
This bit modifies the MMU protection system.

F Bit 10 When read returns zero. When written SHOULD BE ZERO.

       UNP

012 11 10 9 8 7 6 5 4 3 2 1

Z F R S B L D P W C A M

       13

      I

       UNP/SBZ

012 11 10 9 8 7 6 5 4 3 2 1

Z F R S B L D P W C A M

13

I
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Z Bit 11 Branch Prediction Enable/Disable
0 = Branch Prediction Disabled
1 = Branch Prediction Enabled.

I Bit 12 When read returns zero. When written SHOULD BE ZERO.

Bits 31:13 When read returns an UNPREDICTABLE value, and when
written SHOULD BE ZERO, or a value read from these bits
on the same processor. Note that using a read-write-modify
sequence when modifying this register provides the greatest
future compatibility.

Enabling the MMU

Care must be taken if the translated address differs from the untranslated address as
the instructions following the enabling of the MMU will have been fetched using no
address translation and enabling the MMU may be considered as a branch with
delayed execution. A similar situation occurs when the MMU is disabled. The correct
code sequence for enabling and disabling the MMU is implementation defined

If the cache and write buffer are enabled when the MMU is not enabled, the results are
UNPREDICTABLE.

Register 2: Translation table base register

Reading from CP15 register 2 returns the pointer to the currently active first level
translation table in bits[31:14] and an UNPREDICTABLE value in bits[13:0].The CRm
and opcode_2 fields SHOULD BE ZERO when reading CP15 register 2.

Writing to CP15 register 2 updates the pointer to the currently active first level transla-
tion table from the value in bits[31:14] of the written value. Bits[13:0] SHOULD BE ZE-
RO. The CRm and opcode_2 fields SHOULD BE ZERO when writing CP15 register 2.

 Figure 5-6: Register 2

Register 3: Domain access control register

Reading from CP15 register 3 returns the value of the Domain Access Control
Register.

Writing to CP15 register 3 writes the value of Domain Access Control Register.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which
defines the access permissions for one of the sixteen Domains (D15-D0).

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 3.

 Figure 5-7: Register 3
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Register 4: Reserved

Register 4 is reserved. Reading CP15 register 4 is UNDEFINED. Writing CP15
register 4 is UNDEFINED.

 Figure 5-8: Register 4

Register 5: Fault Status Register

Reading CP15 register 5 returns the value of the Fault Status Register (FSR). The
FSR contains the source of the last data fault. Note that only the bottom 9 bits are
returned. The upper 23 bits are UNPREDICTABLE. The FSR indicates the domain and
type of access being attempted when an abort occurred. Bit 8 is always read as zero.
Bits 7:4 specify which of the sixteen domains (D15-D0) was being accessed when a
fault occurred. Bits 3:1 indicate the type of access being attempted. The encoding of
these bits is shown in 8.13 Fault Address and Fault Status Registers (FAR and
FSR) on page 8-17. The FSR is only updated for data faults, not for prefetch faults.

Writing CP15 register 5 sets the Fault Status Register to the value of the data written.
This is useful for a debugger to restore the value of the FSR. The upper 24 bits written
SHOULD BE ZERO. Bit 8 is ignored on writes.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 5.

 Figure 5-9: Register 5

Register 6: Fault Address Register

Reading CP15 register 6 returns the value of the Fault Address Register (FAR). The
FAR holds the virtual address of the access which was attempted when a fault
occurred. The FAR is only updated for data faults, not for prefetch faults.

Writing CP15 register 6 sets the Fault Address Register to the value of the data written.
This is useful for a debugger to restore the value of the FAR.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 6.

 Figure 5-10: Register 6
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Register 7: Cache Operations

Writing to CP15 register 7 is used to manage the ARM810 unified instruction and data
cache. Four cache operations are defined, and the function to be performed selected
by the opcode_2 and CRm fields in the MCR instruction used to write CP15 register 7.

Reading from CP15 register 7 is UNDEFINED.

The “Invalidate ID cache” function invalidates all cache data, including any dirty data
(data which has been modified in the cache but not yet written to main memory). Use
with caution.

The “Invalidate ID single entry” function invalidates a single cache line, discarding any
dirty data (data which has been modified in the cache but not yet written to main
memory). Use with caution.

The “Clean ID single entry” function writes the specified cache line to main memory if
the line is marked Valid and Dirty, and marks the line as not-Dirty . The Valid bit is
unchanged.

The “Clean and Invalidate ID entry” function writes the specified cache line to main
memory if the line is marked Valid and Dirty. It always invalidates the line.

The operations which operate upon a single cache line accept the entry's Index and
Segment number as the data passed in the MCR instruction in the following format:

 Figure 5-11: Register 7

See Chapter 7, Instruction and Data Cache (IDC)   for discussion of the use of these
operations.

Function opcode_2
value

CRm
value

Data Instruction

Invalidate ID cache 0b000 0b0111 SBZ MCR  p15, 0, Rd, c7, c7, 0

Invalidate ID single entry 0b001 0b0111 Index, Seg Format MCR  p15, 0, Rd, c7, c7, 1

Clean ID single entry 0b001 0b1011 Index, Seg Format MCR  p15, 0, Rd, c7, c11, 1

Clean and Invalidate ID entry 0b001 0b1111 Index, Seg Format MCR  p15, 0, Rd, c7, c15, 1

 Table 5-2: Cache operations

SBZ

09 8 7 4 3

SEGMENT SBZINDEX

31 26 25
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Register 8: TLB Operations

Writing to CP15 register 8 is used to control Translation Lookaside Buffers (TLBs). The
ARM810 implements a unified instruction and data TLB.

Two TLB operations are defined, and the function to be performed selected by the
opcode_2 and CRm fields in the MCR instruction used to write CP15 register 8.

Reading from CP15 register 8 is UNDEFINED.

The “Invalidate TLB” function invalidates all of the unlocked entries in the TLB

The “Invalidate TLB single entry” function invalidates any TLB entry corresponding to
the Virtual Address given in Rd, regardless of it’s lock-down state.

Register 9: Cache Lock-Down

Writing CP15 register 9 updates the Cache Lock-Down control register. Bits 30:6
SHOULD BE ZERO when written.

Reading CP15 register 9 returns the value of the Cache Lock-Down control register.
Note that only bit 31 and bits 5:0 are returned. Bits 30:6 are UNPREDICTABLE when
read.

The Cache Lock-Down control register allows software to load entries into the Cache
and lock them in. See 7.7 Lock-down Features  on page 7-3.

The CRm and opcode_2 fields SHOULD BE ZERO when reading or writing CP15
register 9.

 Figure 5-12: Register 9

L Bit 31 Cache Load Entry Mode
0 = Normal operation - Index Field specifies number of lock-down
Indexes
1 = Load Entry Mode - Index Field specifies Index number to load into.

Function opcode_2
value

CRm
value

Data Instruction

Invalidate TLB 0b000 0b0111 SBZ MCR  p15, 0, Rd, c8, c7, 0

Invalidate TLB single
entry

0b001 0b0111 Virtual
Address

MCR  p15, 0, Rd, c8, c7, 1

 Table 5-3: TLB operations

UNP/SBZ

06 5

Index

31 30

L
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Register 10: TLB Lock-Down

Writing CP15 register 10 updates the TLB Lock-Down control register. Bits 30:6
SHOULD BE ZERO when written.

Reading CP15 register 10 returns the value of the TLB Lock-Down control register.
Note that only bit 31 and bits 5:0 are returned. Bits 30:6 are UNPREDICTABLE when
read.

The TLB Lock-Down control register allows software to load entries into the TLB and
lock them in. See Appendix F, Cache and TLB Lock-Down Features .

 Figure 5-13: Register 10

L Bit 31TLB Load Entry Mode
0 = Normal operation - Index Field specifies number of lock-down
 Indexes.The number of lock-down Indexes must be 0 or 4.
1 = Load Entry Mode - Index Field specifies Index number to load into.

Registers 11 -14: Reserved

Accessing (reading or writing) any of these registers will cause ARM810 to take the
undefined instruction trap.

Register 15: Clock and Test Configuration

Register 15 contains clocking configuration bits, test configuration bits, and the PLL
Locked status bit. Writing to CP15 register 15 writes to the configuration bits. Writing
a 1 to the PLL Locked status bit resets the PLL status bit for subsequent reads - see
below for details.

 Figure 5-14: Register 15

All defined bits are set to zero on reset. The register bits have the following functions:

D Bit 0 Enable Dynamic Clock Switching

0 Dynamic clock switching is disabled, clock synchroniser will
permanently select the bus clock as the source of the
processor clock.

1 Dynamic clock switching is enabled, clock synchroniser will
dynamically switch between the fast clock and the bus clock
as  the source of the processor clock as processor access to
the Bus Interface is required.

UNP/SBZ

06 5

Index

31 30

L

 UNP/SBZ

0

D

31

SF0F1LTRTPTO

9 8 6 45 3 2 17
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S Bit 1 Synchronous Clock Switching

0 Clock synchroniser operates in asychronous mode. Use this
setting if the fast clock and the bus clock do not obey the
requirements specified in the AC parameters section for
synchronous mode operation.

1 Clock synchroniser operates in synchronous mode.
Use this setting if the fast clock and the bus clock do obey the
requirements specified in the AC parameters section for
synchronous mode operation.

F1, F0 Bits 3, 2 Fast clock source configuration

F1 = 0 F0 = 0 bus clock (MCLK  or PCLK ) is the fast clock source.
F1 = 0 F0 = 1 REFCLK  pin is the fast clock source.
F1 = 1 F0 = 0 Reserved. Do not use.
F1 = 1 F0 = 1 PLL output clock is fast clock source.

L Bit 4 PLL Locked indication

When Reading:
L = 1  indicates that the PLL output clock is within a small range of

the target frequency.
When Writing:
Writing L = 0 is ignored.
Writing L = 1 resets the PLL Lock Detect circuitry. Following such a

reset, reading the register will return L = 0 until the Lock
Detect circuit again detects that the PLL output clock is within
a small range of the target frequency. This is useful in
systems which stop REFCLK , or change the frequency
applied to the REFCLK  pin, or change the PLL configuration
pins under program control

Note Logic external to ARM810 would be required to implement such
features.

TR, TP, and TO (Bits 5, 6, 7 and 8) are configuration bits for test features used in device
production test. These bits must all be written as zero for normal device operation.
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5.1.2 Architectural Compliance of ARM810 CP15
The ARM810 Coprocessor 15 complies with the definition of the ARMv4 System
Control Coprocessor given in the ARM Architecture Reference (ARM DDI 0100) with
the following exceptions and clarifications:

• Registers 9, 10, and 15 are not defined in the ARM Architecture Manual and
should be considered implementation specific extensions to the CP15
definition.

• The ARM Architecture Reference defines read accesses to registers not
defined for reading, and write accesses to registers not defined for writing, as
UNPREDICTABLE. ARM810 implements these as UNDEFINED - ie,
executing coprocessor instructions which attempt such accesses will cause
ARM810 to take the Undefined Instruction Trap.

• The ARM Architecture Reference defines that instructions which access
register 7 and 8 and which specify values of opcode_2 or CRm which do not
specify an implemented operation should be IGNORED. ARM810 implements
these as UNDEFINED.

• The ARM Architecture Reference defines that instructions which access
register other than 7 and 8 and which specify values of opcode_2 or CRm
other than zero are UNPREDICTABLE. ARM810 implements these as
UNDEFINED.
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This chapter describes the functions of the prefetch unit.

6.1 Overview 6-2
6.2 The Prefetch Buffer 6-2
6.3 Branch Prediction 6-3

The Prefetch Unit6
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6.1 Overview
The ARM8 Prefetch Unit (PU) supplies the ARM8 Core with instructions from the
memory system. The bus from the memory system to the PU is 32 bits wide but can
supply two words every clock cycle. The memory system bandwidth is therefore
greater than the bandwidth requirement of the Core. The Prefetch Unit makes use of
this fact by buffering instructions in its FIFO and then predicting some of the branches
and removing them from the instruction stream to the Core. This reduces the CPI of
the Branch instruction, so increasing the processor’s performance.

The Prefetch Unit is responsible for fetching and supplying instructions to the Core,
and has its own PC and incrementer to provide the memory system address.

6.2 The Prefetch Buffer
Each 32-bit instruction is buffered together with its (offset) address in a FIFO. The
depth of this buffer is 8 instructions. At the far end of the FIFO, the instructions are
removed one at a time and presented to the Core.
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6.3 Branch Prediction
ARM810 employs static branch prediction. This is based solely on the characteristics
of a Branch instruction, and uses no history information. Branch prediction is
performed only when the Z bit in CP15 register 1 is set to 1 (see Chapter 5,
Configuration ).

In ARM processors that have no Prefetch Unit, the target of a Branch is not known until
the end of the Execute stage; at which time it is known whether or not the Branch will
be taken. The best performance is therefore obtained by predicting all Branches as not
taken, and filling the pipeline with the instructions that follow the Branch. In this type of
Core, an untaken Branch requires 1 cycle and a taken Branch requires 3 cycles.

By adding a Prefetch Buffer, it is possible to detect a Branch before it enters the Core.
This allows the use of a different prediction scheme - for instance, one which predicts
that all forward Branches are not taken and all backward Branches are taken. This
scheme is the one implemented in ARM810 and because it models actual conditional
branch behaviour more accurately, it reduces the average branch CPI, thus improving
the processor’s performance.

Using ARM8’s Prefetch Unit, around 65% of all Branches are preceded by enough
non-Branch cycles to be completely predicted. The Core itself deals with the Branches
that the Prefetch Unit does not have time to predict.

6.3.1 Incorrect predictions and correction
Whenever a potentially incorrect prediction is made, information necessary for
recovering from the error is stored. This is the fall-through address in the case of a
predicted taken Branch, and the Branch’s target address in the case of a predicted not
taken Branch.

The Prefetch Unit uses the Core’s condition codes to establish the accuracy of a
prediction. If the prediction is found to be in error, the Prefetch Unit begins fetching
from the saved alternate address, and cancels any instructions that have been
incorrectly passed to the core.

6.3.2 Prediction details
This section describes the conditions under which prediction is made, and the result
of the prediction based upon the direction of the branch.

BL is only predicted if it is an unconditional instruction. When predicted, the instruction
is effectively changed into a link instruction and a branch instruction. The link part of
the instruction is passed to the core as a special MOV instruction, and the branch part
is predicted with the same rules as for the prediction of normal B instructions.

The following summarises the prediction scheme:

If any instruction is not predicted, then it is passed straight through to the core without
change.

Instructions will not be predicted if any of the following conditions apply:

• Z bit in CP15 register 1 is 0

• Instruction[27:24]=“1011” AND Instruction[31:28]!=“1110” (Conditional
BL)

• A prefetch abort occurs when fetching the instruction
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• Instruction[31:28]==“1111” (Invalid condition code)

• Instruction[27:25]!=“101” (Non-branch instruction)

otherwise the instruction will be predicted as taken if:

• Instruction[31:28]==“1110” (Always condition code)

• Instruction[24]==“0” AND Instruction[23]==“1” (Backwards branch)

otherwise the instruction will be predicted as not-taken if:

• Instruction[24]==“0” AND Instruction[23]==“0” (Forwards branch)

Consequences of branch prediction and the prefetch buffer

Due to the speculative prefetching of instructions that the Prefetch Unit performs, it is possible
for the prefetch buffer to contain incorrect instructions. In such circumstances the prefetch buffer
must be flushed, and ARM8 provides a means to do this with the IMB instruction. Please refer
to 4.17 The Instruction Memory Barrier (IMB) Instruction  on page 4-64 for details of when
and how to use the IMB instruction.

6.3.3 Turning off Branch Prediction
Branch prediction is disabled when the Z bit in the control register is 0 (CP15 register 1, bit 11).
Clearing the Z bit does not stop speculative prefetching for a branch that has already been
predicted. Branch prediction must be disabled and speculative prefetching must have
completed before you disable the cache. The following code sequence disables branch
prediction, and makes sure that speculative prefetching has completed:

Branch_Predict_Off

            MRC    p15,0,R0,c0,c0           ;Clear Control Reg Z bit.

            BIC    R0,R0,#&00000800

            MCR    p15,0,R0,c0,c0

            MSR    CPSR_f, #0xF0000000      ;set carry flag

            BCC    Branch_Predict_Off       ;branch never taken

Code to disable the cache should follow this code.
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This chapter describes Instruction and Data Cache.

7.1 Introduction 7-2
7.2 Cacheable Bit and Bufferable Bit 7-2
7.3 IDC Operation 7-2
7.4 IDC Validity 7-2
7.5 Read-Lock-Write 7-3
7.6 IDC Enable/Disable and Reset 7-3

Instruction and Data Cache (IDC)7
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7.1 Introduction
ARM810 contains an 8 Kb mixed instruction and data cache which supports both
write-through and write-back (also known as copy-back) operation. The IDC has 512
lines of 16 bytes (4 words), arranged as a 64-way associative, virtually addressed
cache. The IDC is always reloaded a line at a time (four words). It may be enabled or
disabled via the ARM810 Control Register and is disabled on nRESET. The operation
of the cache is further controlled by the Cacheable (C) and Bufferable (B) bits stored
in the Memory Management Page Table (see Chapter 8, Memory Management
Unit ). For this reason, in order to use the IDC, the MMU must be enabled. The two
functions may however be enabled simultaneously, with a single write to the Control
Register.

7.2 Cacheable Bit and Bufferable Bit
The Cacheable  bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM810’s cache. For example if the processor is polling a
hardware flag in I/O space, it is important that the processor is forced to read data from
the external peripheral, and not a copy of initial data held in the cache. The Cacheable
bit can be configured for both pages and sections.

When the cacheable bit associated with a memory region  is 1, all write acesses to that
region are bufferable and the B bit determines whether the region is cached with write-
through (B=0) or write-back (B=1) cache operation.

See 8.11 Cacheable and Bufferable Status of Memory Regions  on page 8-14.

7.3 IDC Operation
In the ARM810 the cache will be searched regardless of the state of the C bit, only
reads that miss the cache will be affected. The only effect of setting the cacheable bit
to 0 is to inhibit cache replacement from occuring. If the cache is disabled by clearing
bit 2 of the CP15 Control Register, no searching of the cache occurs and all regions
are treated as non-cacheable.

7.3.1 Cacheable reads      C = 1
A linefetch of 4 words will be performed when a cache miss occurs in a cacheable area
of memory and it will be randomly placed in a cache bank.

7.3.2 Uncacheable reads     C = 0
An external memory access will be performed and the cache will not be written.

7.4 IDC Validity
The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.
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7.4.1 Doubly mapped space
Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more
than one virtual address, the cache cannot maintain consistency, since each virtual
address will have a separate entry in the cache, and only one entry will be updated on
a processor write operation. To avoid any cache inconsistencies, both doubly-mapped
virtual addresses should be marked as uncacheable.

7.5 Read-Lock-Write
The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if the data is
already in the cache, the cache will be updated). Externally the two phases are flagged
as indivisible by asserting the LOCK  signal.

7.6 IDC Enable/Disable and Reset
The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable
read accesses will cause lines to be placed in the cache.

7.6.1 To enable the IDC
To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control
Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC
may be enabled simultaneously with a single control register write.

7.6.2 To disable the IDC
To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to
the flush register.

7.7 Lock-down Features
See Appendix F, Cache and TLB Lock-Down Features .
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This chapter describes the Memory Management Unit (MMU).

8.1 MMU Program Accessible Registers 8-3
8.2 Address Translation 8-5
8.3 Translation Process 8-6
8.4 Level One Descriptor 8-7
8.5 Page Table Descriptor 8-8
8.6 Section Descriptor 8-9
8.7 Translating Section References 8-10
8.8 Level Two Descriptor 8-11
8.9 Translating Small Page References 8-12
8.10 Translating Large Page References 8-13
8.12 MMU Faults and CPU Aborts 8-16
8.13 Fault Address and Fault Status Registers (FAR and FSR) 8-17
8.14 Domain Access Control 8-19
8.15 Fault Checking Sequence 8-20
8.16 External Aborts 8-23
8.17 Interaction of the MMU, IDC and Write Buffer 8-24
8.18 Effect of Reset 8-25

Memory Management Unit8
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The Memory Management MMU performs two primary functions: it translates virtual
addresses into physical addresses, and it controls memory access permissions. The
MMU hardware required to perform these functions consists of a Translation Look-
aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4KB blocks of memory and Large Pages consist of 64KB blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1KB Sub-Pages and within Large Pages to 16KB Sub-
Pages.

The MMU also supports the concept of domains - areas of memory that can be defined
to possess individual access rights. The Domain Access Control Register is used to
specify access rights for up to 16 separate domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted and an off-chip access
is required, the MMU outputs the appropriate physical address corresponding to the
virtual address. If access is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.
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8.1 MMU Program Accessible Registers
The following ARM810 System Control Coprocessor (CP15) registers, in conjunction
with page table descriptors stored in memory, determine the operation of the MMU.

 All of these registers except register 8 contain state and can be read using MRC
instructions and written using MCR instructions. Registers 5 and 6 are also written by
the MMU when a data abort is signaled to record the cause of, and address associated
with, an Abort. Writing to Register 8 causes the MMU to perform one of the TLB
operations “Invalidate TLB” or “Invalidate TLB Entry”. Register 8 does not contain state
and cannot be read.

 Depending on the coprocessor instruction used, writing to register 8 with an MCR
instruction causes one of the TLB operations “Invalidate TLB” or “Invalidate TLB Entry”
to be performed by the MMU. Register 8 does not contain state and cannot be read.

System Control Coprocessor is described in Chapter 5, Configuration . The details of
register format and the coprocessor instructions to access them are given there.

 A brief description of these registers is provided below. Each register will be discussed
in more detail within the section that describes its use.

 The Control Register  contains bits to enable the MMU (M bit), enable Alignment
checks (A bit), and to control the access protection scheme (S bit and R bit).

 The Translation Table Base Register  hold the physical address of the base of the
translation table maintained in main memory. Note that this base must reside on a
16KB boundary.

 The Domain Access Control Register  consists of sixteen 2-bit fields, each of which
defines the access permissions for one of sixteen Domains (D15-D0).

 The Fault Status Register  indicates the cause of an abort and the domain number
of the aborted access when a data abort occurs. Bits 7:4 specify which of the sixteen
domains (D15-D0) was being accessed when a fault occurred. Bits 3:1 indicate the
type of access being attempted. The encoding of these bits is shown in Table 8-6:
Priority Encoding of Fault Status  on page 8-17.

 The Fault Address Register  holds the virtual address associated with the access
that caused with abort. See Table 8-6: Priority Encoding of Fault Status  on page 8-
17 for details of exactly what address is stored for each type of fault.

 Register Number Bits

 Control Register 1 M,A,S,R

Translation Table Base 2 31 .. 14

Domain Access Control 3 31 .. 0

Fault Status 5 8 .. 0

Fault Address 6 31 .. 0

TLB Operations 8 31 .. 0

TLB Lock down Control 10 31 & 5 .. 0

 Table 8-1: CP15 register functions
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 Writing to the TLB Operations Register  causes the MMU to perform one of the TLB
operations “Invalidate TLB” or “Invalidate TLB Entry” depending on the coprocessor
instruction used. For details, see the description of Register 8 in Chapter 5,
Configuration .

 The TLB Lock-Down Control Register  allows specific page table entries to be
locked into the TLB. Locking entries in the TLB guarantees that accesses to the locked
page or section can proceed without incurring the time penalty of a translation table
walk. This allows the execution latency for time-critical pieces of code such as interrupt
handlers to be minimised. Use of the TLB lock down facilities is described in
Chapter 7, Instruction and Data Cache (IDC) .



Open Access - Preliminary

Memory Management Unit

8-5ARM810 Data Sheet
ARM DDI 0081E

8.2 Address Translation
The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and the
access permission data, resides in a translation table located in physical memory. The
MMU provides the logic needed to traverse this translation table, obtain the translated
address, and check the access permission.

There are three routes by which the address translation (and hence permission check)
takes place. The route taken depends on whether the address in question has been
marked as a section-mapped access or a page-mapped access; and there are two
sizes of page-mapped access (large pages and small pages). However, the translation
process always starts out in the same way, as described below, with a Level One fetch.
A section-mapped access only requires a Level One fetch, but a page-mapped access
also requires a Level Two fetch.
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8.3 Translation Process

8.3.1 Translation table base
The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to the
base of a table in physical memory which contains Section and/or Page descriptors.
The 14 low-order bits of the TTB Register are set to zero as illustrated in Figure 8-1:
Translation table base register ; the table must reside on a 16KB boundary.

 Figure 8-1: Translation table base register

8.3.2 Level one fetch
Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in Figure 8-2: Accessing
the translation table first level descriptors . This address selects a four-byte
translation table entry which is a First Level Descriptor for either a Section or a Page
(bit1 of the descriptor returned specifies whether it is for a Section or Page)

.

 Figure 8-2: Accessing the translation table first level descriptors

0131431

Translation Table Base

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031



Open Access - Preliminary

Memory Management Unit

8-7ARM810 Data Sheet
ARM DDI 0081E

8.4 Level One Descriptor
The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 8-3: Level one descriptors

The two least significant bits indicate the descriptor type and valididty, and are
interpreted as shown below..

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address 1

1

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 8-2: Interpreting level one descriptor bits [1:0]
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8.5 Page Table Descriptor
Bits 3:2  are always written as 0.

Bit 4  should be written to 1 for backward compatibility.

Bits 8:5  specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10  form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in Figure 8-6: Small
page translation  on page 8-12).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.
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8.6 Section Descriptor
Bits 3:2 (C, & B)  The C & B bits together indicate whether the area of memory mapped
by this section is treated as write-back cacheable, write-through cacheable, non
cached buffered or non-cached non-buffered. Reference section 7.1.1 Cacheable and
Bufferable Status of Memory Regions.

Bit 4  should be written to 1 for backward compatibility.

Bits 8:5  specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP)  specify the access permissions for this section and are interpreted as
shown in Table 8-3: Interpreting access permission (AP) Bits  on page 8-9. Their
interpretation is dependent upon the setting of the S and R bits (control register bits 8
and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Refer to section on access permissions

Bits 19:12  are always written as 0.

Bits 31:20  form the corresponding bits of the physical address for the 1MByte section.

AP S R Permissions
Supervisor User

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission
fault

11 x x Read/Write Read/Write All access types permitted in both
modes.

xx 1 1 Reserved

 Table 8-3: Interpreting access permission (AP) Bits
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8.7 Translating Section References
Figure 8-4: Section translation  illustrates the complete Section translation
sequence. Note that the access permissions contained in the Level One Descriptor
must be checked before the physical address is generated. The sequence for checking
access permissions is described below.

 Figure 8-4: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

1
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8.8 Level Two Descriptor
If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in Figure
8-6: Small page translation  on page 8-12, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors

.

 Figure 8-5: Page table entry (level two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Bit 3:2 (C : B) - The C & B bits together indicate whether the area of memory mapped
by this section is treated as write-back cacheable, write-through cacheable, non
cached buffered or non-cached non-buffered. Reference section 7.1.1 Cacheable and
Bufferable Status of Memory Regions.

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in Table 8-2: Interpreting level one
descriptor bits [1:0]  on page 8-7.

For large pages, bits 15:12  are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in Figure 8-6: Small page
translation  on page 8-12 and Figure 8-7: Large page Ttanslation  on page 8-13).

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 KB Page

 1 0 Small Page Indicates that this is a 4 KB Page

 1 1 Reserved Reserved for future use

 Table 8-4: Interpreting page table entry Bits 1:0
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8.9 Translating Small Page References
Figure 8-6: Small page translation  illustrates the complete translation sequence for
a 4KB Small Page. Page translation involves one additional step beyond that of a
section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later).

 Figure 8-6: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

1
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8.10 Translating Large Page References
Figure 8-7: Large page Ttanslation  illustrates the complete translation sequence for
a 64 KB Large Page. Note that since the upper four bits of the Page Index and low-
order four bits of the Page Table index overlap, each Page Table Entry for a Large Page
must be duplicated 16 times (in consecutive memory locations) in the Page Table.

 Figure 8-7: Large page Ttanslation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

1
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8.11 Cacheable and Bufferable Status of Memory Regions
For first level translation table descriptor for each Section, and the second level
translation table descriptor for each Large Page, and each Small Page contain two
bits—the C-bit and the B-bit—which specify whether the memory in that Section or
Page will be cached or buffered, and whether it will be cached with Write-Through or
Write-Back behaviour.†

In addition the cache and write buffer behaviour is controlled by the cache enable bit
(C-bit) and write buffer enable bit (W-bit) in the CP15 Control Register.

To differentiate the two C bits, we shall add the subscript “tt” to the translation table bits
giving us Ctt and Btt, and the subscript “cr” to the control register bits giving us Ccr and
Wcr.

The Cache and Write Buffer Configuration is determined by the values of Ctt, Btt, Ccr,
Wcr as shown in Table 8-5: Cache and write buffer configuration .

Note † Write-Back caches are also known as Copy-Back caches.
“AND” means bitwise AND function.

Ctt AND Ccr Btt AND Wcr Cache, Writebuffer & External Abort Operation

0 0 Non-Cached, Non-Buffered (NCNB)
• Reads and Writes are not cached.
• Writes are not buffered.
• Reads and writes may be externally aborted.*

0 1 Non-Cached Buffered (NCB)
• Reads and Writes are not cached.
• Writes are buffered.
• Reads may be externally aborted.
• Writes cannot be externally aborted.

1 0 Cached, Write-Through Mode. (WT)
• Reads which hit in the cache read the data from the

cache and do not perform an external access.
• Reads which miss in the cache cause line fills which

may be externally aborted.
• All writes go off chip and are buffered.
• Writes which hit in the cache update the cache.
• Writes cannot be externally aborted.

 Table 8-5: Cache and write buffer configuration
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Note that the Control Register C bit (Ccr) being zero disables all lookups in the cache,
while the Translation table Register C bit (Ctt) being zero only stops new data being
loaded into the cache. With Ccr = 1 and Ctt = 0 the cache will still be searched on every
access to check whether the cache contains an entry for the data.

1 1 Cached, Write-Back Mode. (WB)
• Reads which hit in the cache read the data from the

cache and do not perform an external access.
• Reads which miss in the cache cause line fills which

may be externally aborted.
• Writes which miss in the cache go off-chip and are

buffered.
• Writes which hit in the cache update the cache and

mark the entry as dirty, and do not cause an external
access.

• Cache write-backs are buffered.
• Writes (Cache Write-Misses & Cache Write-Backs)

cannot be externally aborted.

Ctt AND Ccr Btt AND Wcr Cache, Writebuffer & External Abort Operation

 Table 8-5: Cache and write buffer configuration  (Continued)
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8.12 MMU Faults and CPU Aborts
The MMU generates six types of faults:

Alignment Fault

Translation Fault

Domain Fault

Permission Fault

Terminal Fault

Vector Fault

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.
See 8.13 Fault Address and Fault Status Registers (FAR and FSR) .

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access. External aborts will not necessarily
inhibit the external access, as described in the section on external aborts.
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8.13 Fault Address and Fault Status Registers (FAR and FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4 bit value FS[3:0], along with the 4 bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address associated with the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in Table 8-6: Priority Encoding of
Fault Status  on page 8-17.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (i.e. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

Notes 1 Alignment faults may write either 0b0001 or 0b0011 into FS[3:0].
2 Invalid values in Domain[3:0] occur because the fault is raised before a valid

domain field has been selected.

Source Priority Domain[3:0] FAR

highest priority

Terminal Exception 0b0010 invalid VA of start of cache line
being written-back

Vector Exception 0b0000 invalid VA of access causing abort

Alignment 0b00x1 invalid VA of access causing abort

External Abort on Translation First level
Second level

0b1100
0b1110

invalid
valid

VA of access causing abort

Translation  Section
Page

0b0101
0b0111

invalid
valid

VA of access causing abort

Domain  Section
Page

0b1001
0b1011

valid
valid

VA of access causing abort

Permission Section
Page

0b1101
0b1111

valid
valid

VA of access causing abort

External Abort on linefetch Section
Page

0b0100
0b0110

valid
valid

VA of start of cache line
being loaded

External Abort on non-linefetch Section
Page

0b1000
0b1010

valid
valid

VA of access causing abort

lowest priority

 Table 8-6: Priority Encoding of Fault Status
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3 Any abort masked by the priority encoding may be regenerated by fixing the
primary abort and restarting the instruction.

4 The FS[3:0] encoding for Vector Exception breaks from the pattern that
FS[0]==0 indicates an external abort.
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8.14 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. Figure 8-8: Domain
Access Control Register format  on page 8-19 illustrates how the 32 bits of the
register are allocated to define the sixteen 2-bit domains.

 Figure 8-8: Domain Access Control Register format

Table 8-7: Interpreting access bits in Domain Access Control Register  defines
how the bits within each domain are interpreted to specify the access permissions.

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

 Table 8-7: Interpreting access bits in Domain Access Control Register



Open Access - Preliminary

Memory Management Unit

8-20 ARM810 Data Sheet
ARM DDI 0081E

8.15 Fault Checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 8-9: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

get Level One Descriptor

Section Page

misaligned Alignment
Fault

invalid
Section

Translation
Fault

get Page
Table Entry

check Domain Status

invalid
Page

Translation
Fault

no access(00) Page
Domain

Fault
reserved(10)

Section
Domain

Fault

Section Page

client(01)client(01)

manager(01)

Check Access
Permissions

Check Access
Permissions

Physical Address

Section
Permission

Fault
violation

sub-Page
Permission

Fault

Check Vector Exception 26 bit data
access to vecs

Vector
Fault
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8.15.1 Terminal fault
A terminal fault indicates a system software error in the maintenance of the translation
tables in main memory when using the Instruction-Data-Cache in Write-Back mode. It
is indicated in theFault Address Register and Fault Status Register to aid debugging
system software.

A terminal fault is indicated when a cache-write-back fails to translate the virtual
address of the cache line to be written-back into a physical address because the
associated translation table walk was aborted by the memory system or returned an
invalid Level One or Level Two descriptor [A descriptor is invalid if bits[1:0] have the
value “00” or “11”].

System Software must ensure that the cache contains no dirty-data for a page or
section before changing the virtual-to-physical mapping of that page or section or
disabling the virtual-to-physical mapping of that page or section. A Terminal Fault
indicates that system software has failed to do this. When a terminal fault occurs, the
data to be written-back from the cache to main memory is irrecoverably lost. A terminal
fault is therefore not a reversible fault.

8.15.2 Vector fault
A Vector fault is generated by the MMU if the processor attempts a load or store data
access to an address in the range &00000000 and &0000001F inclusive when
operating in a 26-bit Mode.  Vector faults are never generated for instruction fetches.
Vector faults are generated regardless of the setting of the MMU enable bit (M-bit) in
the System Control Coprocessor Control Register.

8.15.3 Alignment fault
If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

8.15.4 Translation fault
There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits[1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits[1:0] of the entry are both 0 or both 1.

8.15.5 Domain fault
There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in Table 8-3: Interpreting access
permission (AP) Bits  on page 8-9. In the case of a section, the domain is checked
once the Level One descriptor is returned, and in the case of a page, the domain is
checked once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.
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8.15.6 Permission fault
There are two types of permission fault: section and sub-page. Permission fault is checked at
the same time as Domain fault. If the 2-bit domain field returns client (01), then the permission
access check is invoked as follows:

section:

If the Level One descriptor defines a section-mapped access, then the AP bits of the descriptor
define whether or not the access is allowed according to Table 8-3: Interpreting access
permission (AP) Bits  on page 8-9. Their interpretation is dependent upon the setting of the S
bit (Control Register bit 8). If the access is not allowed, then a Section Permission fault is
generated.

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two descriptor
specifies four access permission fields (ap3..ap0) each corresponding to one quarter of the
page. Hence for small pages, ap3 is selected by the top 1KB of the page, and ap0 is selected
by the bottom 1KB of the page; for large pages, ap3 is selected by the top 16KB of the page,
and ap0 is selected by the bottom 16KB of the page. The selected AP bits are then interpreted
in exactly the same way as for a section (see Table 8-3: Interpreting access permission (AP)
Bits  on page 8-9), the only difference being that the fault generated is a sub-page permission
fault.
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8.16 External Aborts
In addition to the MMU-generated aborts, ARM810 has an external abort pin which may be
used to flag an error on an external memory access. However, not all accesses can be aborted
in this way, so this pin must be used with great care. The following section describes the
restrictions.

The following accesses may be aborted and restarted safely. In the case of a read-lock-write
sequence in which the read aborts, the write will not happen.

Reads

Unbuffered writes

Level One descriptor fetch

Level Two descriptor fetch

read-lock-write sequence

Cacheable reads (linefetches)

A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the
linefetch then the cache line will be invalidated. If the abort happens on a word that has been
requested by the ARM8, the instruction will be aborted, otherwise the cache line will be
invalidated but program flow will not be interrupted. The line is therefore invalidated under all
circumstances.

Buffered writes.

Buffered writes cannot be externally aborted. Therefore, the system should be configured such
that it does not do buffered writes to areas of memory which are capable of flagging an external
abort.

Writes to Cacheable Regions

Writes to cacheable regions and cache write-backs are performed as buffered writes and
cannot be externally aborted. The system design should ensure that writes to cacheable
regions are not externally aborted.
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8.17 Interaction of the MMU, IDC and Write Buffer
The MMU, IDC, WB and Branch prediction may be enabled/disabled independently. However,
in order for the write buffer or the cache to be enabled the MMU must also be enabled. Also,
Branch prediction must never be enabled when the cache is disabled. There are no hardware
interlocks on these restrictions, so invalid combinations will cause undefined results.

The following procedures must be observed.

 To enable the MMU:

1 Program the Translation Table Base and Domain Access Control Registers
2 Program Level 1 and Level 2 page tables as required
3 Enable the MMU by setting bit 0 in the Control Register.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Table 8-8: Valid MMU, IDC and Write Buffer combinations



Open Access - Preliminary

Memory Management Unit

8-25ARM810 Data Sheet
ARM DDI 0081E

Note Care must be taken if the translated address differs from the untranslated address as
severalinstructions following the enabling of the MMU mayhave been fetched using “flat
translation” and enabling the MMU may be considered as a branch with delayed execution. A
similar situation occurs when the MMU is disabled. Consider the following code sequence:

MOV R1, #0x1

MCR 15,0,R1,0,0 ; Enable MMU

Fetch Flat

Fetch Flat

Fetch Translated

To disable the MMU:

1 Disable Branch prediction, if it is enabled, by using the code sequence given in 6.3.3
Turning off Branch Prediction .

2 Disable the WB by clearing bit 3 in the Control Register.
3 Disable the IDC by clearing bit 2 in the Control Register.
4 Disable the MMU by clearing bit 0 in the Control Register.

Note that if the MMU is enabled, then disabled and subsequently re-enabled the
contents of the TLB will have been preserved. If these are now invalid, the TLB should
be flushed before re-enabling the MMU.

Disabling of all three functions described in steps 2, 3 and 4 may be done simultaneously.

8.18 Effect of Reset
See 3.7 Reset  on page 3-12.
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This chapter describes the Write Buffer (WB).

9.1 Cacheable and Bufferable bits 9-3
9.2 Write Buffer Operation 9-4

Write Buffer9
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The ARM810 write buffer is provided to improve system performance. It can buffer up
to 8 words of data, and 4 independent addresses. It may be enabled or disabled via
the W bit (bit 3) in the ARM810 Control Register and the buffer is disabled and flushed
on reset. The operation of the write buffer is further controlled by the C and B bits which
are stored in the Memory Management Page Tables. For this reason, in order to use
the write buffer, the MMU must be enabled. The two functions may however be
enabled simultaneously, with a single write to the Control Register. For a write to use
the write buffer, both the W bit in the Control Register and either the C or B bit in the
corresponding page table must be set.

It is not possible to abort buffered writes externally; the abort pin will be ignored. Areas
of memory which may generate aborts should be marked as unbufferable in the MMU
page tables.
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9.1 Cacheable and Bufferable bits
These bits controls whether a write operation may or may not use the write buffer.
Typically main memory will be cacheable and bufferable and I/O space unbufferable.
The C and B bits can be configured for both pages and sections. This is decribed in
section 8.11 Cacheable and Bufferable Status of Memory Regions  on page 8-147.
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9.2 Write Buffer Operation

9.2.1 Bufferable write
If the write buffer is enabled and the processor performs a write to a bufferable area, the data
is placed in the write buffer at FCLK  (MCLK  if running with fastbus extension) speeds and the
CPU continues execution. The write buffer then performs the external write in parallel. If
however the write buffer is full (either because there are already 8 words of data in the buffer,
or because there is no slot for the new address) then the processor is stalled until there is
sufficient space in the buffer.

9.2.2 Unbufferable writes
If the write buffer is disabled or the CPU performs a write to an unbufferable area, the processor
is stalled until the write buffer empties and the unbufferable write completes externally, which
may require synchronisation and several external clock cycles.

9.2.3 Read-lock-write
The write phase of a read-lock-write sequence is treated as an Unbuffered write, even if it is
marked as buffered.
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Note: A single write requires one address slot and one data slot in the write buffer; a sequential write
of n words requires one address slot and n data slots. The total of 8 data slots in the buffer may
be used as required. So for instance there could be 3 non-sequential writes and one sequential
write of 5 words in the buffer, and the processor could continue as normal: a 5th write or a 6th
word in the 4th write would stall the processor until the first write had completed.

9.2.4 To enable the Write Buffer
To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control Register,
then enable the write buffer by setting bit 3 in the Control Register. The MMU and write buffer
may be enabled simultaneously with a single write to the Control Register.

9.2.5 To disable the Write Buffer
To disable the write buffer, clear bit 3 in the Control Register.

Note Any writes already in the write buffer will complete normally.
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This chapter describes use of coprocessors with the ARM810.

10.1 Overview 10-2

Coprocessors10
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10.1 Overview
The ARM810 has no external coprocessor interface, so it is not possible to add
external coprocessors to ARM810.

ARM810 has an internal coprocessor, called the System Control Coprocessor
designated as coprocessor number 15. The System Control Coprocessor is used to
control the configuration of the device, including the endianness setting, enabling of
the Cache, MMU, Writebuffer, Branch Prediction, and the control of the Cache and
MMU.

The System Control coprocessor is documented in detail in Chapter 5, Configuration
and in the chapters on those parts of the ARM810 it controls: Chapter 7, Instruction
and Data Cache (IDC) , Chapter 8, Memory Management Unit ,Chapter 9, Write
Buffer , Chapter 6, The Prefetch Unit .
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This chapter describes the bus interface clocking:

11.1 The Bus Clock 11-3
11.2 The Processor Clock 11-4
11.3 Generation of the Fast Clock 11-6
11.4 Forced Processor Clock from the Bus Clock 11-9
11.5 Low Power Idle and Sleep 11-10

ARM810 Clocking11
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The ARM810 uses two clock signals:

• bus clock
• fast clock

These clocks are derived from external inputs to the processor with configurations
defined by external pins and the on-chip programmable registers.

The fast clock can be selected from three sources:

• bus clock
• on-chip PLL
• external reference clock

When the fast clock is sourced from the bus clock, operation is equivalent to
ARM710a's Fastbus mode. When the fast clock is sourced from the external reference
clock, the operation is equivalent to ARM710a's Standard bus mode.

The following sections explain how these clocks are made and describe their expected
usage. In particular, note the addition of a clock multiplier (PLL) in this design.
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11.1 The Bus Clock
The external bus clock is used to cycle the external bus interface. This clock is sourced
directly from external input pins of the device. See Figure 11-1: Generating the
external bus interface clock .

 Figure 11-1: Generating the external bus interface clock

The bus clock is gated with nWait  to provide the external bus clock itself. This allows
external bus cycles to be extended if system timing requires it (see Figure 12-9: Use
of the nWAIT pin to stop ARM810 for 1 MCLK cycle  on page 12-16 for timing
details).

11.1.1 External input clock: MCLK or PCLK
To provide for synchronous memory systems (eg. SDRAM, SSRAM) that use a clock
which is essentially an inverted bus clock (returning data on the rising clock edge), you
can choose to use the PCLK  rather than the MCLK  external input to avoid having to
invert the clock externally. If you use PCLK , MCLK  must be tied HIGH. If you use
MCLK , PCLK  must be tied LOW. New system designs should use PCLK  for future
compatibility. MCLK  is provided for backwards compatibility. In future references in this
document, the term bus clock refers to MCLK  or PCLK  depending on which is being
used.

External
Bus
Interface

Bus
ClockMCLK

PCLK

nWAIT
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11.2 The Processor Clock
The processor clock is used to cycle the internals of the processor, see Figure 11-2:
Generating the Processor Clock . The processor clock can be sourced by one of two
input clock signals to the synchroniser:

• bus clock
• fast clock

 Figure 11-2: Generating the Processor Clock

When the processor is not performing external memory accesses, the fast clock (F)
input to the synchroniser is the source for the processor clock (See 11.3 Generation
of the Fast Clock  on page 11-6 for details of generating the fast clock). When external
memory accesses are being made by the processor, the bus clock (M) input to the
synchroniser is the source for the processor clock (See 11.1 The Bus Clock  on page
11-3 for details of generating the bus clock). Which of the sources to use is determined
by the internal request for external bus signal during normal operation (see 11.4
Forced Processor Clock from the Bus Clock  on page 11-9 for details during
RESET). When changing between F and M inputs, the synchroniser may perform
re-synchronisation.

Note When a buffered write is made, the processor clock continues to run from the fast clock
source at highest performance.

11.2.1 Synchronous/asynchronous operation
The state of the S bit (from Coprocessor 15, Register 15, bit 1) determines whether
any synchronisation occurs between the bus clock (M) and fast clock (F) inputs to the
synchroniser when the processor clock is changed from one to the other before and
after external memory access cycles.

CPU,
CACHE,
MMUProcessor
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Internal request for

F

nWAIT

Bus Clock

Fast Clock

external bus

Clock
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Synchronous operation

If the S bit is HIGH, there must be a tightly defined relationship between the bus clock
and the fast clock (if this relationship is not obeyed, then the S bit should be set LOW).
With the S bit HIGH, the Synchroniser will not perform any synchronisation, and the
bus clock may only make transitions on the falling edge of the fast clock. Please refer
to Section 15.2 for the timing requirements.

Asynchronous Operation

If the S bit is LOW, there is no defined relationship between the bus clock and the fast
clock - they are asynchronous. The synchroniser introduces a synchronisation penalty
whenever the internal core clock switches between the two input clocks (bus clock (M)
and fast clock (F)). This penalty is symmetric, and varies between nothing and a whole
period of the clock to which the core is synchronising. For example, when changing
from the fast clock to the bus clock, the average synchronisation penalty is half a bus
clock period, and when changing from the bus clock to the fast clock, it is half a fast
clock period.
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11.3 Generation of the Fast Clock
The fast clock input to the synchroniser can be selected from three sources. These are
all configured internally using Coprocessor 15, Register 15, bits 2 and 3: F0 and F1.
See 11.5 Low Power Idle and Sleep  on page 11-10 further details. During RESET,
the bus clock is selected as the initial source for the fast clock.

11.3.1 Fast clock from the bus clock (Fastbus mode)
This configuration (F0=0, F1=0) makes the bus clock the source for the fast clock. This
guarantees a defined relationship between the fast clock and the bus clock, and so
synchronous operation (S=1) can be used for improved performance. This
configuration is selected at RESET.

 Figure 11-3: Fast clock the same as the bus clock

MCLK
PCLK

F0 = 0
F1 = 0
S = 1

Fast Clock == Bus Clock
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11.3.2 Fast clock from the output of the PLL
This configuration (F0=1, F1=1) makes the output of the PLL clock multiplier the
source for the fast clock (see Figure 11-4: Fast clock from the output of the PLL )
When operating in this configuration, the S bit must be set LOW for asynchronous
operation (S=0).

 Figure 11-4: Fast clock from the output of the PLL

The PLL and input clock prescaler can be used to produce a fast clock frequency in
the range 45MHz to 100MHz (or 22.5MHz to 50MHz if PLLRANGE  is HIGH) from a
REFCLK  frequency of 1MHz to 80MHz.

The REFCLK  prescaler divides the REFCLK  frequency by 1, 2, 4 or 8 to produce
PLLCLKIn  under control of REFCLKCFG  as shown in Table 11-1: Prescaler divide
ratios .

PLLCLKIn  must be in the range 1MHz to 10MHz.

PLLCLKIn

PLLRANGE

F0 = 1
F1 = 1
S = 0

PLLCFG[6:0]

PLLSLEEP

PLL

Fast
Clock

PLL locked
(CP15, r15, bit4)

REFCLK Prescaler
÷ 1, 2, 4, 8

REFCLK

REFCLKCFG[1:0]

REFCLKCFG Divide ratio

0 0 1

0 1 2

1 0 4

1 1 8

 Table 11-1: Prescaler divide ratios
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The fast clock output frequency is defined according to the following equation:

fFastClock = fPLLCLKIn * M/2

where:

fFastClock is the frequency of the fast clock output

fPLLCLKIn is the frequency of PLLCLKIn , which is the frequency of REFCLK  divided by
1, 2, 4 or 8.

M is the value of the PLLCFG  bus if interpreted as normal unsigned binary
reporesentation. M is defined for the range M = 5, 6, 7 ..., 127. Values of M less
than 5 are invalid.

The output frequency range of the PLL must reside between certain limits. These limits are
determined by the PLLRANGE pin shown in Table 11-2: Output frequency range .

11.3.3 Fast clock direct (bypassing the PLL)
This configuration (F0=1, F1=0) provides a means of directly driving the fast clock from an
external pin. This configuration may operate synchronously or asynchronously depending on
how the reference clock (REFCLK ) is generated. Figure 11-5: Fast clock direct  shows this
configuration.

 Figure 11-5: Fast clock direct

PLLRANGE Min Fast Clock (MHz) Max Fast Clock (MHz)

LOW 45 100

HIGH 22.5 50

 Table 11-2: Output frequency range

REFCLK and Bus Clock
are Asynchronous

F0 = 1
F1 = 0
S = 0

REFCLK and Bus Clock
are Synchronous

F0 = 1
F1 = 0
S = 1

REFCLK
Fast Clock



Open Access - Preliminary

ARM810 Clocking

11-9ARM810 Data Sheet
ARM DDI 0081E

11.4 Forced Processor Clock from the Bus Clock
Coprocessor 15, Register 15, bit 0 (the D bit) is used to override the internal request for external
bus signal to the synchroniser (see Figure 11-2: Generating the Processor Clock  on page
11-4) and force the processor clock to be sourced from the bus clock. At RESET, the D bit is set
LOW, and so the processor clock is sourced from the bus clock until this bit is changed. Once
the fast clock source has been configured, and is sufficiently stable, the D bit should be set
HIGH so the processor runs from the fast clock when not accessing the external bus.
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11.5 Low Power Idle and Sleep
The D bit (see Section 11.4) can be employed to provide a clean transition to allow low-power
idle or sleep mode. As the ARM810 is a fully static processor, stopping its clock when it has no
work to do provides an ideal way to minimise power consumption and provide a fast start-up
when it needs to operate again - all state is just frozen and does not need to be restored.

The easiest means of stopping the processor (and associated system) is to stop the bus clock.
To allow the system to be stopped with the processor state at a precisely defined point in
program execution, the processor clock must be sourced from the bus clock and the bus clock
stopped. This can be achieved by setting the D bit LOW (writing 0 to Coprocessor 15, Register
15, bit 0) and then stopping the bus clock externally.

If the fast clock is being generated by the PLL clock multiplier and the PLL is left running while
the bus clock is stopped, after restarting the bus clock, the D bit can be set HIGH and the
processor clock sourced from an already locked fast clock PLL source. This could be
implemented in the system for a fast wake-up-from-sleep interrupt response (though more
power is consumed if the PLL is running continuously whilst the rest of the system is stopped).

The PLL itself can be placed in Sleep mode (using the PLLSLEEP external input), where it
stops running and therefore consuming power. On wake-up, the PLL will take time to lock, and
the system must take this into account - more details to be advised in future.
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This chapter describes the operation of the bus interface:

12.1 ARM810 Cycle Speed 12-2
12.2 Bus Interface Signals 12-3
12.3 Cycle Types 12-4
12.4 Addressing Signals 12-8
12.5 Memory Request Signals 12-10
12.6 Data Signal Timing 12-11
12.8 Maximum Sequential Length 12-13
12.9 Read-Lock-Write 12-14
12.10 Use of the nWAIT Pin 12-16
12.11 Use of the APE Pin 12-18
12.12 Bus Interface Sampling Points 12-19
12.13 Word, Halfword, and Byte Operations 12-22
12.14 Memory Access Sequence Summary 12-29
12.15 ARM810 Cycle Type Summary 12-33

Bus Interface12
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12.1 ARM810 Cycle Speed
The bus interface is controlled by a bus clock, either MCLK  or PCLK , and all timing
parameters are referenced with respect to this clock. MCLK  is the bus clock
traditionally used on ARM microprocessors and this chapter is written in terms of
MCLK . All diagrams show an MCLK  waveform.

PCLK  is an alternative bus clock input pin on ARM810 which allows use of a clock
waveform which is equivalent to MCLK  inverted. This is provided to simplify system
design with industry standard synchronous DRAM, synchronous SRAM and
programmable logic devices which are designed assuming a bus cycle starts and ends
with a rising clock edge. If using the PCLK  input, invert all references to MCLK , for
example MCLK  rising is equivalent to PCLK  falling, MCLK  HIGH is equivalent to
PCLK  LOW, etc. See Chapter 11, ARM810 Clocking  for more details.

The speed of memory accesses may be controlled, for example to provide more time
for a slow memory device or peripheral, in two ways:

• The LOW or HIGH phases, or both phases of the bus clock may be stretched.
• nWAIT  may be used to insert entire bus clock cycles into the access. When

LOW this signal holds ARM810 in the first phase of the bus cycle by gating out
MCLK  HIGH (or PCLK  LOW). See 12.10 Use of the nWAIT Pin  on page 12-
16.

When the ARM810 fast clock is being derived from the bus clock, we recommend that
nWAIT  is used to extend memory acesses rather than stretching the bus clock directly.
See Chapter 11, ARM810 Clocking .
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12.2 Bus Interface Signals
The signals in the Bus interface can be grouped into 3 categories:

Addressing signals:

A[31:0]
nRW
MAS[1:0]
LOCK
nBLS[3:0]]
CLF

Memory Request signals:

nMREQ
SEQ

Data sampled signals:

D[31:0]

Abort signal:

ABORT

Each of these groups shares a common timing relationship to the bus interface cycles.
The ARM bus interface addressing signals and memory request signals are pipelined
ahead of the data. nMREQ and SEQ are pipelined by a whole bus cycle, and the
address timed signals by 1/2 a cycle. The timing of the address timed signal can be
altered by the APE pin.

Note Unless otherwise specified, all diagrams in this chapter show the ARM810 operating
with the APE pin held HIGH.
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12.3 Cycle Types
The ARM810 bus interface can perform 2 types of cycle, idle cycles and memory
cycles. These cycles are differentiated by the pipelined signals nMREQ and SEQ.
Conventionally cycles are considered to start from the falling edge of MCLK , and this
is how they are shown in all diagrams.

The Addressing and Memory Request signals are pipelined ahead of the Data.
Addressing by a phase (1/2 a cycle), and nMREQ and SEQ by a cycle. This advance
information allows the implementation of efficient memory systems. SEQ is the inverse
of nMREQ and is provided for backwards compatibility with earlier memory controllers.

A simplified single word memory access is shown in Figure 12-1: Simplified single
cycle access . The Access starts with the Address being broadcast. This can be used
for decoding, but the access is not committed until nMREQ (Not Memory Request)
goes LOW the following phase. This indicates that the next cycle will be a memory
cycle. In the example, nMREQ returns HIGH after a single cycle, indicating that there
will be a single memory cycle, followed by an idle cycle. The Data is transferred on the
falling edge of MCLK  at the end of the memory cycle.

 Figure 12-1: Simplified single cycle access

So a memory access consists of an idle cycle, with a valid address, followed by a
memory cycle with the same address. The initial idle cycle allows the memory
controller more time to decode the address.

The ARM810 can perform sequential bursts of accesses. These consist of an idle
cycle and a memory cycle, as shown previously, followed by further memory cycles to
incrementing word addresses (ie. a, a+4, a+8 etc.). SeeFigure 12-2: Simplified
sequential access  on page 12-5. After the initial idle cycle, the address is pipelined
by 1/2 a bus cycle from the data.

Note Unless otherwise stated all of the diagrams in this section depict operation with APE
held HIGH. The operation of APE is described in 12.11 Use of the APE Pin  on page
12-18.

nMREQ and SEQ are pipelined by a bus cycle from the data. If nWAIT  is being used
to stretch cycles, then nMREQ and SEQ will no longer refer to the next MCLK  cycle,
but the next bus cycle. See 12.10 Use of the nWAIT Pin  on page 12-16.

MCLK

A[31:0]

nMREQ

D[31:0]

Address

Request

Data

Idle Cycle Memory Cycle Idle Cycle
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 Figure 12-2: Simplified sequential access

Sequential bursts can only occur on word accesses, and will always be in the same
direction, ie. Read (nRW LOW) or Write (nRW HIGH).

A memory controller should always qualify the use of the address with nMREQ. There
are certain circumstances in which a new address can be broadcast on the address
bus, but nMREQ will not go LOW to signal a memory access. This will only happen
when an internal (MMU generated) abort occurs.

A single cycle memory access is shown in more detail in Figure 12-3: Single word
read or write . The timing parameters used throughout this section are defined in
Chapter 15, ARM810 AC Parameters .

 Figure 12-3: Single word read or write

MCLK

A[31:0]

nMREQ

D[31:0]

Address Address+4

Request 1 Request 2

Data 1 Data 2

Idle Cycle Memory Cycle Memory Cycle Idle Cycle

MCLK

A[31:0]

nRW, MAS[1:0]

nMREQ

D[31:0] (Write)

D[31:0] (Read)

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tde
Tdout

Tdoh
Tdz

Tdis
Tdih

Idle Cycle Memory Cycle Idle Cycle
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After a non-sequential access as shown in Figure 12-3: Single word read or write
on page 12-5 the interface can perform sequential memory cycles. SeeFigure 12-4:
Two word sequential read or write  on page 12-6.

 Figure 12-4: Two word sequential read or write

The minimum interval between bus accesses can occur after a buffered write. In this
case there may only be a single idle cycle between two memory cycles to non-
sequential addresses. This means that the address for the second access is broadcast
on A[31:0]  during the HIGH phase of the final memory cycle of the buffered write. See
Figure 12-5: Minimum interval between bus accesses  on page 12-7

MCLK

A[31:0]

nRW, MAS[1:0]

nMREQ

D[31:0] (Write)

D[31:0] (Read)

Taddr Tah

Taddr Tah

Tmsd Tmsh

Tde
Tdout

Tdoh
Tdz

Tdis
Tdih

Addr Addr+4

Idle Cycle Memory Cycle Memory Cycle Idle Cycle
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 Figure 12-5: Minimum interval between bus accesses

This is the closest case of back to back cycles on the bus, and the memory controller
should be designed to handle this case. In high speed systems one solution is to use
nWAIT  to increase the decode and access time available for the second access. The
case shown is that of a write followed by a read. It could also have been a write
followed by a non-sequential write.

A further result is that memory and peripheral strobes should not be direct decodes of
the address bus. This could result in them changing during the last cycle of a write
burst. Either APE should be used to modify the address timing, see 12.11 Use of the
APE Pin  on page 12-18, or the memory controller must ensure that the address used
is held until after the end of the cycle.

Where to sample the signals on the ARM810 bus interface is discussed in 12.12 Bus
Interface Sampling Points  on page 12-19.

MCLK

A[31:0]

nRW

nMREQ

D[31:0]

Taddr Tah

Taddr Tah

Tde
Tdz

Tdis
Tdih

Address 1 (Buffered Write) Address 2 (Read)

Idle Cycle Mem. Cycle Idle Cycle Mem. Cycle Idle Cycle
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12.4 Addressing Signals
The timing of the addressing signals can be modified using the APE pin. If this pin is
HIGH the addressing signals will be timed from the rising edge of the memory clock
MCLK.

This in considered to be the standard timing of the interface, and is shown in the
diagrams unless otherwise specified.

Memory accesses may be read or write, and are differentiated by the signal nRW.
nRW may not change during a sequential access, so if a read from address A is
followed immediately by a write to address (A+4), then the write to address (A+4)
would be performed on the bus as a non-sequential access.

Likewise, any memory access may be of a word, halfword, or a byte quantity. These
are differentiated by the signal MAS[1:0] . Again, MAS[1:0]  may not change during
sequential accesses. It is not possible to perform sequential byte or halfword
accesses.

MAS[1:0] is encoded as follows:

In order to reduce system power consumption, at the end of an access the addressing
signals will be left with their current values until the next access occurs.

After a buffered write there may be only a single idle cycle between the two memory
cycles. In this case the next non-sequential address will be broadcast in the last cycle
of the previous access. This is the worst case for address decoding, see Figure 12-5:
Minimum interval between bus accesses  on page 12-7.

When operating the device with the APE pin LOW, the addresses are latched until the
LOW phase of MCLK . See Figure 12-6: Single word read or write with delayed
addressing  on page 12-9. This is discussed further in .12.11 Use of the APE Pin  on
page 12-18.

MAS bit 1 bit 0 Access size

0 0 byte

0 1 halfword

1 0 word

1 1 reserved, not used

 Table 12-1: MAS encoding
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 Figure 12-6: Single word read or write with delayed addressing
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12.5 Memory Request Signals
The memory request signals, nMREQ and SEQ, are pipelined by 1 bus cycle, and
refer to the next bus cycle. A LOW value on nMREQ indicates that next cycle on the
ARM810 bus interface will be a memory cycle. Conversely, a HIGH value on nMREQ
indicates that the next bus cycle will be an idle cycle.

Care must be taken when de-pipelining these signals if nWAIT  is being used, as they
always refer to the following bus cycle, rather than the following MCLK  cycle. nWAIT
will stretch the bus cycle by an integer number of MCLK  cycles. See 12.10 Use of the
nWAIT Pin  on page 12-16.

The signal SEQ is the inverse of nMREQ, and is provided for backwards compatibility
with earlier memory controllers. SEQ may be left unconnected in new designs.
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12.6 Data Signal Timing

12.6.1 D[31:0]

During a read access the data is sampled on the falling edge of MCLK  at the end of
the memory cycle. The setup and hold timings are given in Chapter 15, ARM810 AC
Parameters .

During a write access, the data on D[31:0]  is timed off the falling edge of MCLK  at the
start of the memory cycle. If nWAIT  is being used to stretch this cycle, the data will be
valid from the falling edge of MCLK  at the end of the previous cycle, when nWAIT  was
HIGH. See 12.10 Use of the nWAIT Pin  on page 12-16.

In a low power system it is important to ensure that the databus is not allowed to float
to an undefined level. This will cause power to be dissipated in the inputs of devices
connected to the bus. This is particularly important when a system is put into a low
power sleep mode. We recommend that one set of databus drivers in the system are
left enabled during sleep to hold the bus at a defined level.
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12.7 ABORT Signal
The ABORT  signal is sampled in the middle of each memory cycle on the rising edge
of MCLK, on both read and write accesses.The effect of ABORT  on the operation of
the ARM810 is discussed in Chapter 3, Programmer’s Model , and in 8.16 External
Aborts  on page 8-23

An ABORT  can be flagged on any memory cycle, however it will be ignored on
buffered writes, which cannot be aborted. Cache write-backs from regions of memory
marked as write-back cacheable are performed as buffered-writes and also cannot be
aborted.

Due to the pipelined nature of the bus interface, if an access in the middle of a
sequential burst is aborted, the bus interface has already requested the next access
in the burst, and ARM810 will end the sequential branch instruction after this next
access is completed, unless the access is a linefill. Linefills always read four words,
regardless of which accesses are aborted.

The effect of ABORT  during linefetches is slightly different to that during other access.
During a linefetch the ARM810 will fetch four words of data regardless of which words
of data were requested by the ARM core, the rest of the words are fetched
speculatively. If ABORT  is asserted on a word which was requested by the ARM core,
the abort will function normally. If the abort is signalled on a word which was not
requested by the ARM core, the access will not be aborted, and program flow will not
be interrupted. Regardless of which word was aborted, the line of data will not be
placed in the cache as it is assumed to contain invalid data.
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12.8 Maximum Sequential Length
The ARM810 may perform sequential memory accesses whenever the cycle is of the
same type (i.e. read/write) as the previous cycle, and the addresses are consecutive.
However, sequential accesses are interrupted on a 256-word boundary. This is to allow
the MMU to check the translation protection as the address crosses a sub-page
boundary. If a sequential access is performed over a 256-word boundary, the access
to word 256 is turned into a non-sequential access, and further accesses continue
sequentially as before.

This also simplifies the design of the memory controller. Provided that peripherals and
areas of memory are aligned to 256-word boundaries sequential bursts will always be
local to one peripheral or memory device. This means that all accesses to a device will
always start with a non-sequential access.

A DRAM controller can take advantage of the fact that sequential cycles will always be
within a DRAM page, provided the DRAM page covers an address range of at least
256 words.
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12.9 Read-Lock-Write
The read-lock-write sequence is generated by a SWP instruction. On the bus it
consists of a read access followed by a write access to the same address. This
sequence is differentiated by the LOCK  signal. LOCK  has addressing signal timing
and is controlled similarly by APE. If APE is HIGH, LOCK  will go HIGH in the HIGH
phase of MCLK  at the start of the read access. It will always go LOW at the end of the
write access.

The LOCK  signal indicates that the two accesses should be treated as an atomic unit.
A memory controller should ensure that no other bus activity is allowed to happen in
between the accesses while LOCK  is asserted. When the ARM810 has started a
read-lock-write sequence it cannot be interrupted until it has completed.

 Figure 12-7: Read-locked-write

The read cycle will always be performed as a single, non-sequential, external read
cycle, regardless of the contents of the cache. The write will be forced to be
unbuffered, so that it can be aborted if necessary. The cache will be updated on the
write.

Either of the accesses of the read locked write sequence can be aborted. The bus
behaviour when the read access is aborted is shown in Figure 12-8: Read-locked-
write with read aborted
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 Figure 12-8: Read-locked-write with read aborted
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12.10Use of the nWAIT Pin
The nWAIT  pin can be used to extend memory accesses in whole cycle increments.
nWAIT  may only change during the LOW phase of MCLK  and when low gates out
MCLK  HIGH phases. nWAIT  will not prevent changes in nMREQ, SEQ and a write on
D[31:0]  during the phase in which it is taken LOW. Changes in these signals will then
be prevented until the MCLK  HIGH phase after nWAIT  was taken HIGH. All other
outputs cannot change from the time nWAIT  goes LOW until the next MCLK  HIGH
phase after nWAIT  returns HIGH.

The address timing is dependant on nWAIT  as follows:

• If APE is LOW, nWAIT  will not prevent changes on A[31:0]  during the phase
in which it was taken LOW. A[31:0]  will be prevented from changing until the
MCLK  LOW phase after nWAIT  becomes HIGH again.

• If APE is HIGH, A[31:0]  will be prevented from changing from the time nWAIT
goes LOW until the next MCLK  HIGH phase after nWAIT  returns HIGH.

 Figure 12-9: Use of the nWAIT pin to stop ARM810 for 1 MCLK cycle

The heavy bars indicate the cycle for which signals will be stable as a result of
asserting nWAIT, assuming APE is HIGH.

The signals nMREQ and SEQ are pipelined by one bus cycle. This pipelining should
be taken into account when these signals are being decoded. The value of nMREQ
indicates whether the next bus cycle is a data cycle or an Idle Cycle. As bus cycles are
stretched by nWAIT, the boundary between bus cycles is determined by the falling
edge of MCLK  when nWAIT  is HIGH. A useful rule of thumb is to sample the value of
nMREQ only when nWAIT  is HIGH.

When nWAIT  is used to stretch a memory cycle, nMREQ will return HIGH during the
first phase of the memory cycle if a single word access is occurring. In this case it is
important that the memory controller does not interpret the HIGH value on nMREQ as
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indicating that an idle cycle is signalled when in fact it is a stretched memory cycle.
See Figure 12-9: Use of the nWAIT pin to stop ARM810 for 1 MCLK cycle  on page
12-16
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12.11Use of the APE Pin
APE is used to modify the address timing. It is a static configuration pin which should
be tied HIGH or LOW.

• If APE is HIGH the address timing seen on A[31:0], nBLS[3:0],nRW,nBW
and LOCK  will be the standard pipelined address timing, with the addresses
changing during the HIGH phase of MCLK .

• If APE is LOW the address timing is modified, and the address changes
during the following LOW phase of MCLK . See Chapter 15, ARM810 AC
Parameters .
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12.12Bus Interface Sampling Points
The following two sections describe the recommended sampling points for bus
interface signals, the first section when operating at or near the maximum frequency,
and the second section when operating at a lower frequency. Recommended sampling
points are denoted by the heavy bars (transfer bars) on signals in the figures, and the
earliest recommended sampling point is also given in the tables.

The signals nMREQ and SEQ are pipelined with respect to the bus interface. This
pipelining should be taken into account when these signals are being decoded. The
value of nMREQ indicates whether the next bus cycle is a data cycle or an idle cycle.
As bus cycles are stretched by nWAIT the boundary between bus cycles is
determined by the falling edge of MCLK  when nWAIT  is HIGH. A useful rule of Thumb
is to sample the value of nMREQ only when nWAIT is HIGH. This is shown by the
transfer bars in Figure 12-10: Sampling points at maximum frequency  and Figure
12-11: Sampling points at reduced frequency .

The MCLK  frequencies at which these differing methodologies should be used will
depend on the device parameters. Please consult the AC timings to determine which
sampling points should be used. These can be obtained from your Semiconductor
supplier.

12.12.1Fast Operation
If the ARM810 is being operated at, or near, its maximum operating frequency the
output delays on the bus interface mean that the signals must be sampled as late as
is possible.

 Figure 12-10: Sampling points at maximum frequency
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Sampling the signals at these points will result in the most robust system design, which
will scale to faster clock speeds. However, it does reduce the time available to the
memory controller.

12.12.2Reduced frequency operation
When operating the bus interface at a reduced frequency it is possible to sample the
bus interface signals at earlier points in the cycle. This allows the memory system to
make more efficient use of the cycles.

It is strongly recommended that nWAIT  is derived from nMREQ as shown in the
diagram. Trying to generate nWAIT  in the previous cycle is liable to result in a critical
path which will limit the maximum frequency of operation of the design unnecessarily..

 Figure 12-11: Sampling points at reduced frequency

Signal Earliest Recommended Sample Point

A[31:0] Set-up to MCLK  RISING

nBLS[3:0],nRW, MAS[1:0], LOCK Set-up to MCLK  RISING

nMREQ, SEQ Set-up to MCLK  FALLING

D[31:0] (Write) Set-up to MCLK  FALLING

 Table 12-2: Sampling points at maximum frequency
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Signal Earliest Recommended Sample Point

A[31:0] MCLK  FALLING

nBLS[3:0],nRW, MAS[1:0], LOCK MCLK  FALLING

nMREQ, SEQ MCLK  RISING

D[31:0] (Write) MCLK  RISING

 Table 12-3: Sampling points at reduced frequency
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12.13Word, Halfword, and Byte Operations
The ARM810 can perform word, halfword and byte operations on the bus interface.
The memory system can decode which bytes of the memory system to access using
one of two methods

• Decoding the access width and byte address information contained in
MAS[1:0] and A[1:0]. 12.13.1 Decoding Byte Activity using MAS[1:0] and
A[1:0]  describes this method of memory system operation. This method
provides limited compatibilty with memory systems designed for earlier ARM
processors - see 12.13.3 Backwards compatibility with earlier ARM
Processors  on page 12-27 for details.

• Using the Byte Lane Selects (nBLS[3:0]). These outputs indicate directly
which bytes of the memory system should be activated for the access. 12.13.2
Decoding Byte Activity using nBLS[3:0]  on page 12-25 describes this
method of memory system operation. We recommend use of this decode
method for all new memory system designs.

12.13.1Decoding Byte Activity using MAS[1:0] and A[1:0]

Big-endian / little-endian operation

The ARM810 treats words in memory as being stored in big-endian or little-endian
format depending on the value of the bigend bit in the control register.

In the little-endian scheme the lowest numbered byte in a word is considered to be the
least significant byte of the word and the highest numbered byte is the most significant.
Byte 0 of the memory system should be connected to data lines 7 through 0 (D[7:0] )
in this scheme.

 Figure 12-12: Little-endian addresses of bytes within word

In the big-endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (D[31:24] ). Load and store are the only instructions affected by the endianness:
see 4.9 Single Data Transfer (LDR, STR)  on page 4-27 for more details.

Little-endian scheme

Databus Bits

Higher Address 31              24 23               16 15               8 7                0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

 •   Least significant byte is at lowest address
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 Figure 12-14: Big-endian addresses of bytes within words

Decoding MAS[1:0] and A[31:0]

This Byte Activity decode method is recommended if upgrading a memory controller
designed for an earlier ARM processor or if compatibility with earlier ARM Processors
is a concern. If neither of these conditions apply, we recommend the Byte Activity
Decode method described in 12.13.1 Decoding Byte Activity using MAS[1:0] and
A[1:0]  on page 12-22

For all accesses A[31:2]  provides the address of the 32-bit word the access will read
or write. A[1:0] and MAS[1:0]  indicate which bytes within that word must be written or
read.

The external memory system must decode these signals differently for big-endian and
little-endian systems. It is recommended that systems which wish to support dynamic
switching of endianness should decode Byte Activity using the nBLS[3:0]  signals
described in section 12.13.2 Decoding Byte Activity using nBLS[3:0]  on page 12-
25

When performing word writes, the ARM810 presents the 32 bit word to the memory
system on the data bus D[31:0] , and the memory system must enable a write into all
four bytes of the memory system.

When performing halfword writes the ARM810 ensures the halfword to be written
appears on the data bus in the place where it is required by a 32-bit wide memory
system. The ARM810 achieves this by duplicating the halfword to be written twice
across the 32 bit data bus, on D[31:16]  and D[15:0] , so that the memory system need
only enable a write into the correct two bytes of the memory system as shown in the
tables below. Memory systems narrower than 32-bits may make use of this duplication
to simplify multiplexing of the data bus to the narrower memory.

When performing byte writes the ARM810 ensures the byte to be written appears on
the data bus in the place where it is required by a 32-bit wide memory system. The
ARM810 achieves this by duplicating the byte to be written four times across the 32 bit
data bus on D[31:24] , D[23:16 ], D[15:8] , D[7:0] , so that the memory system need
only enable a write into the correct byte of the memory system as shown in the tables
below. Memory systems narrower than 32-bits may make use of this duplication to
simplify multiplexing of the data bus to the narrower memory.

When performing word reads, the ARM810 reads the 32 bit word provided by the
memory system on D[31:0] .

Big-endian scheme

Databus Bits

Higher Address 31              24 23               16 15               8 7                0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

 •   Most significant byte is at lowest address
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When performing halfword reads, the ARM810 reads the 16-bit halfword from the
place where it would be provided by a 32-bit wide memory system. The ARM810
achieves this by reading 16 bits from the two bytes indicated in the tables below and
then internally rotating and zero-extending or sign-extending the data to be in the
correct position in the register at the completion of load-halfword instruction.

When performing byte reads, the ARM810 reads the byte from the place where it
would be provided by a 32-bit wide memory system. The ARM810 achieves this by
reading the byte indicated as active in the tables below and then internally rotating and
zero-extending or sign-extending the data to be in the correct position in the register
at the completion of the byte-load instruction.

Because ARM810 duplicates bytes and halfwords before presenting to the data bus
for writes, and internally rotates and then sign-extends or zero-extends bytes and
halfwords after reading from the data bus for reads, a 32-bit wide memory system
never needs to shift, rotate, zero-extend or sign-extend data. The memory system
control logic only needs to enable the appropriate bytes of the memory as shown in
the tables below.

Note: The memory system design should ensure that during byte and halfword reads
all bits of the data bus are driven to valid levels. Floating inputs levels on any bits of
the data bus may result in increased power consumption in the ARM810 input pads.
One way of ensuring this is to enable all bytes of the memory system for byte and
halfword reads—the ARM810 will ignore the extra data on the data bus.

Notes X means “don’t care”.
MAS[1:0]  = 11 is Reserved for future use, it is never used by ARM810.
The Byte Activity Decode indicated is recommended for compatibility with future ARM
Microprocessors.

MAS[1:0]
Indicates

MAS[1] MAS[0] A[1] A[0]
Memory Read/Write the Byte on

D[31:24] D[23:16] D[15:8] D[7:0]

Word 1 0 X X Yes Yes Yes Yes

Halfword 0 1 0 X No No Yes Yes

1 X Yes Yes No No

Byte 0 0 0 0 No No No Yes

0 1 No No Yes No

1 0 No Yes No No

1 1 Yes No No No

Reserved 1 1 X X Yes Yes Yes Yes

 Table 12-4: Decoding Byte Activity for little-endian system.
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Notes X means “don't care”.
MAS[1:0]  = 11 is Reserved for future use, it is never used by ARM810.
The Byte Activity Decode indicated is recommended for compatibility with future ARM
Microprocessors.

12.13.2Decoding Byte Activity using nBLS[3:0]
This is the recommended Byte Activity decode method for all new memory controller
designs if compatibility with earlier ARM Processors is not a concern.

For all accesses A[31:2] provides the address of the 32-bit word the access will read
or write. The Byte Lane Selects nBLS[3:0 ] are active low signals which indicate
directly which bytes within that word must be written or read.

MAS[1:0]
Indicates

MAS[1] MAS[0] A[1] A[0]
Memory Read/Write the Byte on

D[31:24] D[23:16] D[15:8] D[7:0]

Word 1 0 X X Yes Yes Yes Yes

Halfword 0 1 0 X Yes Yes No No

1 X No No Yes Yes

Byte 0 0 0 0 Yes No No No

0 1 No Yes No No

1 0 No No Yes No

1 1 No No No Yes

Reserved 1 1 X X Yes Yes Yes Yes

 Table 12-5: Decoding Byte Activity for big-endian system.
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nBLS[3:0] have the same timing as address, and are related to MAS[1:0] , A[1:0] , and
the internal endianness setting (CP15 Control Register “B” bit) as follows:

Note X means “don't care”.

As the internal endianness configuration has been used in the generation of the nBLS
outputs, memory systems using nBLS  to control memory system Byte Activity can
switch endianness dynamically with no added external logic.

The nBLS[3:0 ] should be used to enable the bytes of the memory system as follows

CP15 Control
Register B Bit

MAS[1:0] A[1:0] nBLS

0 (Little-endian) 1 0 (Word) X X 0000

0
0

0 1 (Halfword)
0 1

0 X
1 X

1100
0011

0
0
0
0

0 0 (Byte)
0 0
0 0
0 0

0 0
0 1
1 0
1 1

1110
1101
1011
0111

1 (Big-endian) 1 0 (Word) X X 0000

1
1

0 1 (Halfword)
0 1

0 X
1 X

0011
1100

1
1
1
1

0 0 (Byte)
0 0
0 0
0 0

0 0
0 1
1 0
1 1

0111
1011
1101
1110

 Table 12-6: nBLS[3:0] as a function of B, MAS[1:0] and A[1:0]

Signal When Low, enable read or
write of byte connected to data
bus bits

nBLS[0] D[7:0]

nBLS[1] D[15:8]

nBLS[2] D[23:16]

nBLS[3] D[31:24]

 Table 12-7: nBLS[3:0]  and Bytes of memory system
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ARM810 will only output the patterns of nBLS[3:0]  shown in Table 12-6: nBLS[3:0]
as a function of B, MAS[1:0] and A[1:0]  and it duplicates bytes and halfwords across
the data bus on writes. Memory system designs for use with ARM810 can depend on
this behaviour to reduce the amount of bus multiplexing required when connecting
ARM810 to memory systems narrower than 32-bits. However, if compatibility is
desired with future ARM Microprocessors the memory system should be designed to
operate with arbitrary patterns appearing on nBLS[3:0 ], and depend only on the byte
of data appearing on the data bus pins associated with the appropriate nBLS signal
(see Table 12-7: nBLS[3:0] and Bytes of memory system .

For write operations, the ARM810 will ensure that the data is available on the correct
byte or bytes of the data bus as indicated by nBLS[3:0 ].

For read operations, the ARM810 will accept the data on the byte or bytes of the data
bus indicated by nBLS[3:0] . Data returned on bytes of the data bus for which the
associated nBLS  signal is 1 will be ignored. [However see note below re. valid signal
levels].

Together the ARM810 behaviour for reads and writes means that a 32 bit wide memory
system never needs to shift, rotate, zero-extend or sign-extend data. The memory
system control logic only needs to enable the appropriate bytes of the memory as
indicated by nBLS[3:0] .

Note: The ARM710a microprocessor also has output pins nBLS[3:0] . The ARM710a
does not include endianness information in the nBLS[3:0]  outputs, and so does not
support dynamic switching of endianness without some additional logic in the memory
system. For further details of use of the ARM710a nBLS[3:0]  outputs see the
ARM710a Datasheet.

Note: During reads it should be ensured that all bits of the data bus are driven to a
defined level. Floating inputs levels on any bits of the data bus may result in increased
power consumption in the ARM810 input pads.

12.13.3Backwards compatibility with earlier ARM Processors

Halfword Instructions

ARM processor implementations prior to ARM Architecture v4 including ARM710,
ARM610, ARM7, and ARM6 do not have any halfword load and store instructions and
they do not perform halfword load or store accesses on their bus interfaces—they
perform only byte and word accesses.

To use ARM810 with a memory controller designed for an earlier ARM processor and
which was designed to use the signals nBW and A[1:0] to decode byte activity for bus
accesses:

• Connect MAS[1] the memory controller’s nBW  input.
• Leave MAS[0]  disconnected.
• Connect A[1:0] as before.

This will allow the ARM810 to perform byte and word accesses correctly. Halfword bus
operations will not work correctly, so halfword instructions cannot be used in this
configuration - note however that as halfword instructions did not exist in earlier ARM
processors, existing application code will not contain any of these instructions and so
will operate correctly with this configuration. New software developments for a
hardware platform using a memory system configured in this way must not use
halfword instructions.
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Byte Lane Strobes

The ARM710a microprocessor also has output pins nBLS[3:0] . The ARM710a does
not include endianness information in the nBLS[3:0]  outputs, and so does not support
dynamic switching of endianness without some additional logic in the memory system.
For further details of use of the ARM710a nBLS[3:0]  outputs see the ARM710a
Datasheet.
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12.14Memory Access Sequence Summary
ARM810 performs many different bus access sequences, and all are constructed out
of combinations of non-sequential and sequential accesses. There may be any
number of idle cycles between two other memory accesses. If a memory access is
followed by an idle period on the bus (as opposed to another non-sequential access),
then the address, and the signal nRW and nBW  will remain at their previous value in
order to avoid unnecessary bus transitions.

The accesses performed by an ARM810 are:

Unbuffered WriteLevel 1 translation fetch

Uncached ReadLevel 2 translation fetch

Buffered WriteRead-Lock-Write sequence

Linefetch

See also 12.15 ARM810 Cycle Type Summary  on page 12-33.

12.14.1Unbuffered writes / uncacheable reads
These are the most basic access types. Apart from the difference between read and
write, they are the same. Each may consist of a single (LDR/STR) or multiple (LDM/
STM) access. A multiple access consists of a non-sequential access followed by a
sequential access. These cycles always reflect the type (ie. read/write, byte/word/
halfword) of the instruction requesting the cycle.

 Figure 12-15: Two single word non-sequential unbuffered accesses

12.14.2Buffered write
The external bus cycle of a buffered write is identical to and indistinguishable from the
bus cycle of an unbuffered write. However there may only be a single idle cycle
between a buffered write, and the next access on the bus. These cycles always reflect
the type (byte/word/halfword) of the instruction requesting the cycle. Note that if
several write accesses are stored concurrently within the write buffer, then each burst
will start with a non-sequential access, followed by subsequent sequential cycles.
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 Figure 12-16: Two single word non-sequential buffered writes

Note that in the case of a pair of buffered writes, there may only be a single idle cycle
between the two accesses.

12.14.3Linefetch
This access appears on the bus as a non-sequential access followed by three
sequential accesses. Note that linefetch accesses always start on a 4-word boundary,
and are always word accesses. Even if the instruction which caused the linefetch was
a byte load instruction (eg. LDRB), the linefetch accesses will be word accesses on
the bus. Figure 12-17: Linefetch  shows a linefetch.

 Figure 12-17: Linefetch
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A linefetch may be safely aborted on any word in the transfer. If an abort occurs on any
word during the linefetch, the line will not be placed in the Cache, as it is assumed to
be invalid. If the abort occurs on a word that has been requested by the ARM core, the
core will be aborted, otherwise the cache line will be invalidated but program flow will
not be interrupted.

12.14.4Translation fetches
These accesses are required to obtain the translation data for an access. There are
two types, level 1 and level 2. A level 1 access is required for a section-mapped
memory location, and a level 2 access is required for a page mapped memory location.
A Level 2 access is always preceded by a level 1 access. Note that these translation
fetches are often immediately followed by a data access. In fact the translation fetch
held up the data access because the translation was not contained in the Translation
Lookaside Buffer (TLB). Translation fetches are always read word accesses. So if a
byte or write (or both) access was not possible because the address was not contained
in the TLB, the access would be preceded by the translation fetch(es) which would
always be word read accesses.

 Figure 12-18: Translation table-walking sequence for page

The translation fetch diagrams show a page table walk caused by a write access that
missed the TLB. The diagrams show the relationship of the page table walk and the
access. The access could have equally well been a read.
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 Figure 12-19: Translation table-walking sequence for section
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12.15ARM810 Cycle Type Summary

Operation nRW A[31:0] nMREQ D[31:0]

Idle old old i

Linefetch read a idle

read a memory

read a+4 memory data

read a+8 memory data

read a+12 memory data

read a+12 idle data

 Start r/w a idle

r/w a memory

data

Uncacheable Read /

Unbuffered Write Repeat r/w a+n memory

data

End r/w old idle

Start write a idle

write a memory

Buffered Write data

Repeat write a+n memory

data

Read phase read aL idle

read aL memory

read aL idle data

write aL idle

write aL idle

Write phase write aL idle

write aL memory

Read-Lock-Write write aL idle data

Write phase read a idle

after aborted read read a idle

read a idle

Start read l1a idle

Section Translation Fetch read l1a memory

 Table 12-8: Cycle type summary
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Key to cycle type summary:

read Read (nRW LOW)

r/w applies equally to Read and Write

write Write (nRW HIGH)

old signal remains at previous value

a first Address

a+n next sequential address

aL Read-Lock-Write Address

l1a Level 1 translation Table address

l2a Level 2 translation Table address

idle Idle cycle (nMREQ HIGH)

memory Memory cycle (nMREQ LOW)

data valid data on data bus

Each line in Table 12-8: Cycle type summary  on page 12-33 shows the state of the bus
interface during a single MCLK  cycle. It illustrates the pipelining of nMREQ and the address.
Each operation type section shows the sequence of cycles which make up that type of access,
with each line down the diagram showing successive clock cycles.

The uncached read / unbuffered write is shown in three sections. The start and end are always
present, with the repeat section repeated as many times as required when a multiple access is
being performed.

Buffered Writes are also of variable length and consist of the start section plus as many
consecutive repeat sections as are necessary.

A swap instruction consists of the read phase, followed by one of the two possible write phases.

Activity on the memory interface is the succession of these access sequences.

read l1a idle data

Start read l1a idle

read l1a memory

Page Translation Fetch read l1a idle data

read l1a idle

read l2a idle

read l2a memory

read l2a idle data

Operation nRW A[31:0] nMREQ D[31:0]

 Table 12-8: Cycle type summary
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The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test
Access Port and Boundary-Scan Architecture (refer to this standard for an explanation
of the terms used in this section and for a description of the TAP controller states).
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13.1 Overview
The boundary-scan interface provides a means of testing the core of the device when
it is fitted to a circuit board, and a means of driving and sampling all the external pins
of the device irrespective of the core state. This latter function permits testing of both
the device's electrical connections to the circuit board, and (in conjunction with other
devices on the circuit board having a similar interface) testing the integrity of the circuit
board connections between devices. The interface intercepts all external connections
within the device, and each such “cell” is then connected together to form a serial
register (the boundary scan register). The whole interface is controlled via 5 dedicated
pins: TDI, TMS, TCK, nTRST and TDO. Figure 13-1: Test Access Port (TAP)
Controller State Transitions  shows the state transitions that occur in the TAP
controller.

 Figure 13-1: Test Access Port (TAP) Controller State Transitions
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13.2 Reset
The boundary-scan interface includes a state-machine controller (the TAP controller).
In order to force the TAP controller into the correct state after power-up of the device,
a reset pulse must be applied to the nTRST pin. If the boundary scan interface is to be
used, then nTRST must be driven LOW, and then HIGH again. If the boundary scan
interface is not to be used, then the nTRST pin may be tied permanently LOW. Note
that a clock on TCK is not necessary to reset the device.

The action of reset (either a pulse or a DC level) is as follows:

System mode is  selected (i.e. the boundary scan chain does not intercept any
of the signals passing between the pads and the core).
IDcode mode is selected. If TCK is pulsed, the contents of the ID register will
be clocked out of TDO.
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13.3 Pullup Resistors
The IEEE 1149.1 standard effectively requires that TDI, nTRST and TMS should have
internal pullup resistors. In order to minimise static current draw, these resistors are
not fitted to ARM810. Accordingly, the 4 inputs to the test interface (the above 3 signals
plus TCK) must all be driven to good logic levels to achieve normal circuit operation.
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13.4 Instruction Register
The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the
CAPTURE-IR controller state is:    0001.
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13.5 Public Instructions
The following public instructions are supported:

Instruction Binary Code

EXTEST 0000

SAMPLE/PRELOAD 0011

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

IDCODE 1110

BYPASS 1111

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK
and all output transitions on TDO occur as a result of the falling edge of TCK.

13.5.1 EXTEST (0000)
The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the boundary-
scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the
boundary-scan output cells to the system pins are captured by the boundary-scan
cells. In the SHIFT-DR state, the previously captured test data is shifted out of the BS
register via the TDO pin, whilst new test data is shifted in via the TDI pin to the BS
register parallel input latch. In the UPDATE-DR state, the new test data is transferred
into the BS register parallel output latch. Note that this data is applied immediately to
the system logic and system pins. The first EXTEST vector should be clocked into the
boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting
INTEST to ensure that known data is applied to the system logic.

13.5.2 SAMPLE/PRELOAD (0011)
The BS (boundary-scan) register is placed in normal (system) mode by the SAMPLE/
PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the
boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is
taken on the rising edge of TCK. Normal system operation is unaffected. In the SHIFT-
DR state, the sampled test data is shifted out of the BS register via the TDO pin, whilst
new data is shifted in via the TDI pin to preload the BS register parallel input latch. In
the UPDATE-DR state, the preloaded data is transferred into the BS register parallel
output latch. Note that this data is not applied to the system logic or system pins while
the SAMPLE/PRELOAD instruction is active. This instruction should be used to
preload the boundary-scan register with known data prior to selecting the INTEST or
EXTEST instructions (see the table below for appropriate guard values to be used for
each boundary-scan cell).
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13.5.3 CLAMP (0101)
The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all
output signals is defined by the values previously loaded into the boundary-scan
register. A guarding pattern (specified for this device at the end of this section) should
be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD
instruction prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

13.5.4 HIGHZ (0111)
The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the HIGHZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

13.5.5 CLAMPZ (1001)
The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state, but the data supplied to the disabled output drivers is
derived from the boundary-scan cells. The purpose of this instruction is to ensure,
during production testing, that each output driver can be disabled when its data input
is either a 0 or a 1.

A guarding pattern (specified for this device at the end of this section) should be pre-
loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior
to selecting the CLAMPZ instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.

Single-step operation is possible using the INTEST instruction.

13.5.6 IDCODE (1110)
The IDCODE instruction connects the device identification register (or ID register)
between TDI and TDO. The ID register is a 32-bit register that allows the manufacturer,
part number and version of a component to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-
scan cells are placed in their normal (system) mode of operation.
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In the CAPTURE-DR state, the device identification code (specified at the end of this
section) is captured by the ID register. In the SHIFT-DR state, the previously captured
device identification code is shifted out of the ID register via the TDO pin, whilst data
is shifted in via the TDI pin into the ID register. In the UPDATE-DR state, the ID register
is unaffected.

13.5.7 BYPASS (1111)
The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between
TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the boundary-
scan cells are placed in their normal (system) mode of operation. This instruction has
no effect on the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via TDI and out via TDO after a
delay of one TCK cycle. Note that the first bit shifted out will be a zero. The bypass
register is not affected in the UPDATE-DR state.
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13.6 Test Data Registers
Figure 13-2: Boundary-scan block diagram  illustrates the structure of the boundary
scan logic.

 Figure 13-2: Boundary-scan block diagram

13.6.1 Bypass register
Purpose: This is a single bit register which can be selected as the path between TDI
and TDO to allow the device to be bypassed during boundary-scan testing.

Length: 1 bit
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Operating Mode: When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in the SHIFT-DR state
with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR
state.

13.6.2 ARM810 device identification (ID) code register
Purpose: This register is used to read the 32-bit device identification code. No
programmable supplementary identification code is provided.

Length: 32 bits

The format of the ID register is as follows:

 Figure 13-3: ID register format

Please contact your supplier for the correct Device Identification Code.

Operating Mode: When the IDCODE instruction is current, the ID register is selected
as the serial path between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel
inputs during the CAPTURE-DR state.

13.6.3 ARM810 boundary scan (BS) register
Purpose: The BS register consists of a serially connected set of cells around the
periphery of the device, at the interface between the core logic and the system input/
output pads. This register can be used to isolate the core logic from the pins and then
apply tests to the core logic, or conversely to isolate the pins from the core logic and
then drive or monitor the system pins.

Operating modes: The BS register is selected as the register to be connected between
TDI and TDO only during the SAMPLE/PRELOAD, EXTEST and INTEST instructions.
Values in the BS register are used, but are not changed, during the CLAMP and
CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the
core logic and pins are maintained and normal system operation is unaffected.

In TEST mode (ie when either EXTEST or INTEST is the currently selected
instruction), values can be applied to the core logic or output pins independently of the
actual values on the input pins and core logic outputs respectively. On the ARM810 all
of the boundary scan cells include an update register and thus all of the pins can be
controlled in the above manner. Additional boundary-scan cells are interposed in the
scan chain in order to control the enabling of tristateable buses.

011112272831

1Manufacturer IdentityPart NumberVersion
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The correspondence between boundary-scan cells and system pins, system direction
controls and system output enables is as shown inTable 13-2: Boundary scan chain
description  on page 13-15. The cells are listed in the order in which they are
connected in the boundary-scan register, starting with the cell closest to TDI. All
boundary-scan register cells at input pins can apply tests to the on-chip core logic.

The EXTEST guard values specified in Table 13-2: Boundary scan chain
description  on page 13-15 should be clocked into the boundary-scan register (using
the SAMPLE/PRELOAD instruction) before the EXTEST instruction is selected, to
ensure that known data is applied to the core logic during the test. The INTEST guard
values shown in the table below should be clocked into the boundary-scan register
(using the SAMPLE/PRELOAD instruction) before the INTEST instruction is selected
to ensure that all outputs are disabled. These guard values should also be used when
new EXTEST or INTEST vectors are clocked into the boundary-scan register.

The values stored in the BS register after power-up are not defined. Similarly, the
values previously clocked into the BS register are not guaranteed to be maintained
across a Boundary Scan reset (from forcing nTRST LOW or entering the Test Logic
Reset state).

13.6.4 Output enable boundary-scan cells
The boundary-scan register cells Nendout , Nabe, Ntbe, and Nmse control the output
drivers of tristate outputs as shown in the table below. In the case of OUTEN0 enable
cells (Nendout , Ntbe), loading a 1 into the cell will place the associated drivers into
the tristate state, while in the case of type INEN1 enable cells (Nabe, Nmse), loading
a 0 into the cell will tristate the associated drivers.

To put all ARM810 tristate outputs into their high impedance state, a logic 1 should be
clocked into the output enable boundary-scan cells Nendout  and Ntbe, and a logic 0
should be clocked into Nabe and Nmse. Alternatively, the HIGHZ instruction can be
used.

For example, if the on-chip core logic causes the drivers controlled by Nendout  to be
tristate, (ie by driving the signal nENDOUT HIGH), then a 1 will be observed on this
cell if the SAMPLE/PRELOAD or INTEST instructions are active.
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13.7 Boundary-Scan Interface Signals

 Figure 13-4: Boundary-scan general timing

 Figure 13-5: Boundary-scan tri-state timing
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 Figure 13-6: Boundary-scan reset timing

Notes 1 Assumes a 25pF load on TDO. Output timing derates at 0.072ns/pF of extra
load applied.

2 TDO enable time applies when the TAP controller enters the Shift-DR or Shift-
IR states.

3 TDO disable time applies when the TAP controller leaves the Shift-DR or Shift-
IR states.

nTRST

TMS

Tbsr

Tbsrs Tbsrh

Symbol Parameter Min Typ Max Units Notes

Tbscl TCK low period 50 ns 9

Tbsch TCK high period 50 ns 9

Tbsis TDI,TMS setup to [TCr] 10 ns

Tbsih TDI,TMS hold from [TCr] 10 ns

Tbsoh TDO hold time 5 ns 1

Tbsod TCf to TDO valid 40 ns 1

Tbsss I/O signal setup to [TCr] 5 ns 4

Tbssh I/O signal hold from [TCr] 20 ns 4

Tbsdh data output hold time 5 ns 5

Tbsdd TCf to data output valid 40 ns

Tbsoe TDO enable time 5 ns 1,2

Tbsoz TDO disable time ns 1,3

Tbsde data output enable time  5 ns 5,6

Tbsdz data output disable time 40 ns 5,7

Tbsr Reset period 30 ns

Tbsrs tms setup to [TRr] 10 ns  9

Tbsrh tms hold from [TRr] 10 ns  9

 Table 13-1: ARM810 boundary-scan interface timing
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4 For correct data latching, the I/O signals (from the core and the pads) must be
setup and held with respect to the rising edge of TCK in the CAPTURE-DR
state of the SAMPLE/PRELOAD, INTEST and EXTEST instructions.

5 Assumes that the data outputs are loaded with the AC test loads (see AC
parameter specification).

6 Data output enable time applies when the boundary-scan logic is used to
enable the output drivers.

7 Data output disable time applies when the boundary scan is used to disable
the output drivers.

8 TMS must be held high as nTRST is taken high at the end of the boundary-
scan reset sequence.

9 TCK may be stopped indefinitely in either the low or high phase.

As the signal list of the ARM810 is still preliminary so is the boundary scan order .

Cell No.
from tdi

Cell Name Pin Type Output Enable

1 bsNencon (TnOEnCon) OUTNEN

2 bsNrw nRW OUT TnOEnCon

3 bsbls nBLS[3] OUT TnOEnCon

4 bsbls nBLS[2] OUT TnOEnCon

5 bsbls nBLS[1] OUT TnOEnCon

6 bsbls nBLS[0] OUT TnOEnCon

7 bsdata D[31] IN

8 bsdata D[31] OUT TnOEnD

9 bsdata D[30] IN

10 bsdata D[30] OUT TnOEnD

11 bsdata D[29] IN

12 bsdata D[29] OUT TnOEnD

13 bsdata D[28] IN

14 bsdata D[28] OUT TnOEnD

15 bsdata D[27] IN

16 bsdata D[27] OUT TnOEnD

17 bsdata D[26] IN

18 bsdata D[26] OUT TnOEnD

 Table 13-2: Boundary scan chain description
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19 bsdata D[25] IN

20 bsdata D[25] OUT TnOEnD

21 bsdata D[24] IN

22 bsdata D[24] OUT TnOEnD

23 bsdata D[23] IN

24 bsdata D[23] OUT TnOEnD

25 bsdata D[22] IN

26 bsdata D[22] OUT TnOEnD

27 bsdata D[21] IN

28 bsdata D[21] OUT TnOEnD

29 bsdata D[20] IN

30 bsdata D[20] OUT TnOEnD

31 bsdata D[19] IN

32 bsdata D[19] OUT TnOEnD

33 bsdata D[18] IN

34 bsdata D[18] OUT TnOEnD

35 bsdata D[17] IN

36 bsdata D[17] OUT TnOEnD

37 bsdata D[16] IN

38 bsdata D[16] OUT TnOEnD

39 bsdata D[15] IN

40 bsdata D[15] OUT TnOEnD

41 bsdata D[14] IN

42 bsdata D[14] OUT TnOEnD

43 bsdata D[13] IN

44 bsdata D[13] OUT TnOEnD

45 bsdata D[12] IN

46 bsdata D[12] OUT TnOEnD

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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47 bsdata D[11] IN

48 bsdata D[11] OUT TnOEnD

49 bsdata D[10] IN

50 bsdata D[10] OUT TnOEnD

51 bsdata D[09] IN

52 bsdata D[09] OUT TnOEnD

53 bsdata D[08] IN

54 bsdata D[08] OUT TnOEnD

55 bsdata D[07] IN

56 bsdata D[07] OUT TnOEnD

57 bsdata D[06] IN

58 bsdata D[06] OUT TnOEnD

59 bsdata D[05] IN

60 bsdata D[05] OUT TnOEnD

61 bsdata D[04] IN

62 bsdata D[04] OUT TnOEnD

63 bsdata D[03] IN

64 bsdata D[03] OUT TnOEnD

65 bsdata D[02] IN

66 bsdata D[02] OUT TnOEnD

67 bsdata D[01] IN

68 bsdata D[01] OUT TnOEnD

69 bsdata D[00] IN

70 bsdata D[00] OUT TnOEnD

71 bsNendata (TnOEnD) OUTNEN

72 bsdbe DBE OUTENIN

73 bsmclk MClk IN

74 bspclk PClk IN

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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75 bsrefclk REFCLK IN

76 bsnwait nWAIT IN

77 bspllrange PLLRANGE IN

78 bspllrange PLLRANGE OUT TnOEnRCLKCFG

79 bspllsleep PLLSLEEP IN

80 bsrefclkcfg REFCLKCFG[1] IN

81 bsrefclkcfg REFCLKCFG[1] OUT TnOEnRCLKCFG

82 bsrefclkcfg REFCLKCFG[0] IN

83 bsrefclkcfg REFCLKCFG[0] OUT TnOEnRCLKCFG

84 bsNenrccfg (TnOEnRCLKCFG) OUTNEN

85 bsmreq nMREQ OUT TnOEnMSE

86 bsseq SEQ OUT TnOEnMSE

87 bsNenmse (TnOEnMSE) OUTNEN

88 bsmse MSE OUTENIN

89 bspllcfg PLLCFG[6] IN

90 bspllcfg PLLCFG[5] IN

91 bspllcfg PLLCFG[4] IN

92 bspllcfg PLLCFG[3] IN

93 bspllcfg PLLCFG[2] IN

94 bspllcfg PLLCFG[1] IN

95 bspllcfg PLLCFG[0] IN

96 bsabort ABORT IN

97 bsNfiq nFIQ IN

98 bsNreset nRESET IN

99 bsNirq nIRQ IN

100 bstestmode TESTMODE IN

101 bstestout TESTOUT[4] OUT TnOEnTESTOUT

102 bstestout TESTOUT[3] OUT TnOEnTESTOUT

103 bstestout TESTOUT[2] OUT TnOEnTESTOUT

104 bstestout TESTOUT[1] OUT TnOEnTESTOUT

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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105 bstestout TESTOUT[0] OUT TnOEnTESTOUT

106 bsNentestout (TnOEnTESTOUT) OUTNEN

107 bsape APE IN

108 bsabe ABE OUTENIN

109 bsNenabe (TnOEnA) OUTNEN

110 bsa A[31] IN

111 bsa A[31] OUT TnOEnA

112 bsa A[30] IN

113 bsa A[30] OUT TnOEnA

114 bsa A[29] IN

115 bsa A[29] OUT TnOEnA

116 bsa A[28] IN

117 bsa A[28] OUT TnOEnA

118 bsa A[27] IN

119 bsa A[27] OUT TnOEnA

120 bsa A[26] IN

121 bsa A[26] OUT TnOEnA

122 bsa A[25] IN

123 bsa A[25] OUT TnOEnA

124 bsa A[24] IN

125 bsa A[24] OUT TnOEnA

126 bsa A[23] IN

127 bsa A[23] OUT TnOEnA

128 bsa A[22] IN

129 bsa A[22] OUT TnOEnA

130 bsa A[21] IN

131 bsa A[21] OUT TnOEnA

132 bsa A[20] IN

133 bsa A[20] OUT TnOEnA

134 bsa A[19] IN

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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135 bsa A[19] OUT TnOEnA

136 bsa A[18] IN

137 bsa A[18] OUT TnOEnA

138 bsa A[17] IN

139 bsa A[17] OUT TnOEnA

140 bsa A[16] IN

141 bsa A[16] OUT TnOEnA

142 bsa A[15] IN

143 bsa A[15] OUT TnOEnA

144 bsa A[14] IN

145 bsa A[14] OUT TnOEnA

146 bsa A[13] IN

147 bsa A[13] OUT TnOEnA

148 bsa A[12] IN

149 bsa A[12] OUT TnOEnA

150 bsa A[11] IN

151 bsa A[11] OUT TnOEnA

152 bsa A[10] IN

153 bsa A[10] OUT TnOEnA

154 bsa A[09] IN

155 bsa A[09] OUT TnOEnA

156 bsa A[08] IN

157 bsa A[08] OUT TnOEnA

158 bsa A[07] IN

159 bsa A[07] OUT TnOEnA

160 bsa A[06] IN

161 bsa A[06] OUT TnOEnA

162 bsa A[05] IN

163 bsa A[05] OUT TnOEnA

164 bsa A[04] IN

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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Key

IN Input pad.

OUT Output pad.

OUTNEN An internal signal which is Active low output enable controlling output or
bidirectional pads. Internal signal name is given in Pin column in braces, eg
“(TnOEncon)”.

OUTENIN   Active high input pin which controls pad output enables. In some cases gated
with other internal signals, eg, DBE high only enables D[31:0] output pads
when ARM810 is performing a write operation on the external bus. DBE is
ignored at other times.

165 bsa A[04] OUT TnOEnA

166 bsa A[03] IN

167 bsa A[03] OUT TnOEnA

168 bsa A[02] IN

169 bsa A[02] OUT TnOEnA

170 bsa A[01] IN

171 bsa A[01] OUT TnOEnA

172 bsa A[00] IN

173 bsa A[00] OUT TnOEnA

174 bslock LOCK OUT TnOEnCon

175 bsclf CLF OUT TnOEnCon

176 bsmas MAS[1] OUT TnOEnCon

177 bsmas MAS[0] OUT TnOEnCon

Cell No.
from tdi

Cell Name Pin Type Output Enable

 Table 13-2: Boundary scan chain description  (Continued)
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This chapter describes the DC Parameters.The information in this chapter is provided
as a guide only. Refer to your semiconductor vendor for definitive DC parameters.

14.1 Absolute Maximum Ratings 14-2
14.2 DC Operating Conditions 14-2
14.3 Input Thresholds 14-3
14.4 DC Characteristics 14-3

ARM810 DC Parameters14
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14.1 Absolute Maximum Ratings

Note: 1 These are stress ratings only. Exceeding the absolute maximum ratings may
permanently damage the device. Operating the device at absolute maximum
ratings for extended periods may affect device reliability.

14.2 DC Operating Conditions

Notes: 1 Voltages measured with respect to VSS.
2 OCZ - Output, CMOS levels, tri-stateable

IOCZ - Input/Output, CMOS levels, tri-stateable
3 Measured with 2mA load on output

Symbol Parameter Min Max Units Note

VDD Supply voltage VSS-0.3 VSS+4.0 V 1

VCC Pad voltage reference VSS-0.3 VSS+5.5 V 1

Vip Voltage applied to any pin VSS-0.3 VCC+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

 Table 14-1: ARM810 DC maximum ratings

Symbol Parameter Min Typ Max Units Notes

VDD Supply voltage 3.0 3.3 3.6 V

Vohc OCZ and IOCZ  output HIGH voltage 2.4 VDD V 1,2,3

Volc OCZ and IOCZ output LOW voltage 0.0 0.4 V 1,2,3

Ta Ambient operating temperature 0 70 ¡C

 Table 14-2: ARM810 DC operating conditions
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14.3 Input Thresholds
The following table gives input thresholds.

Notes: 1 Voltages measured with respect to VSS.

14.4 DC Characteristics

Notes: 1 ESD - 2 KV minimum
Refer to Appendix A, Use of the ARM810 in a 5V TTL System   for more information.

Symbol Parameter Min Max Units Notes

Vihc Input HIGH voltage 2.3 VDD V 1

Vilc Input LOW voltage 0.0 1.0 V 1

 Table 14-3: Input thresholds

Symbol Parameter Nom Units Note

IDD Static Supply current 20 µA

Isc Output short circuit current 100 mA

Ilu DC latch-up current >500 mA

Iin IC input leakage current 1 µA

Ioh Output HIGH current (Vout = VDD-0.4V) 2 mA

Iol Output LOW current (Vout = VSS+0.4V) 7 mA

Cin Input capacitance 7 pF

ESD HMB model ESD 4 KV 1

 Table 14-4: ARM810 DC characteristics
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This chapter describes the AC Parameters.The information in this chapter is provided
as a guide only. Refer to your semiconductor vendor for definitive DC parameters.

15.1 Test Conditions 15-2
15.2 Clocking 15-3
15.3 Main Bus Signals 15-6

ARM810 AC Parameters15
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15.1 Test Conditions
The AC timing parameters presented in this section assume that the outputs of
ARM810 have been loaded with the capacitive loads shown in the Test Load column
of the table below; these loads have been chosen as typical of the system in which
ARM810 might be employed. The output pads of ARM810 are CMOS drivers which
exhibit a propagation delay that increases linearly with the increase in load
capacitance. An “Output derating” figure is given for each output pad, showing the
approximate rate of increase of output time with increasing load capacitance.

Output Signal Test Load (pF) Output Derating (ns/pF)

Rise Fall

A[31:0] 50 0.04 0.06

nBLS 50 0.04 0.06

CLF 50 0.04 0.06

D[31:0] 50 0.04 0.06

nR/W 50 0.04 0.06

nB/W 50 0.04 0.06

LOCK 50 0.04 0.06

MAS[1:0] 50 0.04 0.06

nMREQ 50 0.04 0.06

SEQ 50 0.04 0.06

 Table 15-1: ARM810 AC test conditions
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15.2 Clocking

Fast Clock from Bus Clock

Fast Clock from Output of PLL

Fast Clock direct from REFCLK

Symbol Parameter Min Max Unit Note

Tmclkl_fb MCLK LOW time 10 ns 1,2

Tmclkh_fb MCLK HIGH time 10 ns 1,2

Tmclkc_fb MCLK cycle time 20 ns 1,2

Tpclkh_fb PCLK LOW time 10 ns 1,2

Tpclkl_fb PCLK HIGH time 10 ns 1,2

Tpclkc_fb PCLK cycle time 20 ns 1,2

 Table 15-2: Timing, fast clock from bus clock

Symbol Parameter Min Max Unit Note

Tpllrefclkl REFCLK low time 10 ns 2,3

Tpllrefclkh REFCLK high time 10 ns 2,3

Fpllrefclk REFCLK Frequency 1 80 MHz 2,3

Fpllclkin PLL Clock Input Freq 1 10 MHz 2,3

Fpllclkout PLL Clock Output
Freq

25 66 MHz 2,3,4

 Table 15-3: Timing, fast clock from output of PLL

Symbol Parameter Min Max Unit Note

Trefclkl REFCLK low time 7.5 ns 2,4

Trefclkh REFCLK high time 7.5 ns 2,4

Trefclkc REFCLK cycle time 15 ns 2,4

 Table 15-4: Timing, fast clock direct from REFCLK
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Bus Clock

Bus clock timing for all modes except “Fast Clock from Bus Clock”.

Relationship between REFCLK and Bus Clock in Synchronous Mode.

This timing relationship must be maintained between the external clock pins when ARM810 is
being used in Synchronous clocking mode. Note that this requirement only arises when both
the fast clock and the bus clock are being provided directly from two separate external pins. It
does not apply when the PLL is being used to generate the fast clock—in that case
Asynchronous clocking mode must be used. It does not apply when the bus clock is selected
as the source of the fast clock—in that case there is only 1 external clock pin.

 Figure 15-1: Synchronous mode using MCLK

 Figure 15-2: Synchronous mode using PCLK

Symbol Parameter Min Max Unit Note

Tmclkl MCLK low time 10 ns 1,2

Tmclkh MCLK high time 10 ns 1,2

Tmclkc MCLK cycle time 20 ns 1,2

Tpclkl PCLK low time 10 ns 1,2

Tpclkh PCLK high time 10 ns 1,2

Tpclkc PCLK cycle time 20 ns 1,2

 Table 15-5: Timing, bus clocks

REFCLK

MCLK

figure: arm810_f_m

Trefclkl Trefclkh
Trefclkc

Trmh
Trms

REFCLK

PCLK

figure: arm810_f_p

Trefclkl Trefclkh
Trefclkc

Trph
Trps
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Symbol Parameter min max unit note

Trmh REFCLK - MCLK hold time 4 ns 1,2

Trms MCLK - REFCLK setup time 4 ns 1,2

Trph REFCLK - PCLK hold time 4 ns 1,2

Trps PCLK - REFCLK setup time 4 ns 1,2

 Table 15-6: Synchronous mode clock relationship



Open Access - Preliminary

ARM810 AC Parameters

15-6 ARM810 Data Sheet
ARM DDI 0081E

15.3 Main Bus Signals

 Figure 15-3: ARM810 bus timing using MCLK with APE HIGH
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 Figure 15-4: ARM810 bus timing using MCLK with APE LOW
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 Figure 15-5: ARM810 bus timing using PCLK with APE HIGH
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 Figure 15-6: ARM810 bus timing using PCLK with APE LOW
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 Figure 15-7: ARM810 bus enable timing

 Figure 15-8: ARM810 nWAIT timing using MCLK

 Figure 15-9: ARM810 nWAIT timing using PCLK
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Symbol Parameter Min Max Unit Note

Tws_m nWAIT setup to MCLK 0 ns

Twh_m WAIT hold from MCLK 2 ns

Tabe_m ABE to address bus enable 12 ns 5

Tabz_m ABE address bus disable 24 ns

Taddr1_m MCLK to addr. delay ALE High 12 ns 5

Taddr2_m MCLK to addr. delay ALE Low 12 ns 5

Tah1_m address hold time ALE High 5 ns 5

Tah2_m address hold time ALE Low 5 ns 5

Tbls1_m MCLK to nBLS[3:0] delay ALE High 12 ns 5

Tbls2_m MCLK to nBLS[3:0] delay ALE Low 12 ns 5

Tblh1_m MCLK to nBLS[3:0] hold, ALE High 5 ns 5

Tblh2_m MCLK to nBLS[3:0] hold, ALE Low 5 ns 5

Tdbe_m DBE to data enable 12 ns 5

Tde_m MCLK to data enable 6 ns 5

Tdbz_m DBE to data disable 20 ns

Tdz_m MCLK to data disable 6 20 ns

Tdout_m MCLK to data out delay 24 ns 5

Tdoh_m MCLK to data out hold 5 5

Tdis_m data in to MCLK setup 2

Tdih_m MCLK to data in hold 5

Tabts_m abort to MCLK setup 8

Tabth1_m MCLK to abort hold 2 6

Tabth2_m MCLK to about hold 2 6

Tmse_m nMREQ and SEQ enable 10

Tmsz_m nMREQ and SEQ disable 20

Tmsd_m nMREQ and SEQ delay 12

Tmsh_m nMREQ and SEQ hold 5

 Table 15-7: ARM810 bus timing using MCLK
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Symbol Parameter Min Max Unit Note

Tws_p nWAIT setup to PCLK 0 ns

Twh_p WAIT hold from PCLK 2 ns

Tabe_p ABE to address bus enable 12 ns 5

Tabz_p ABE address bus disable 24 ns

Taddr1_p PCLK to addr. delay,ALE High 12 ns 5

Taddr2_p PCLK to addr. delay,ALE Low 12 ns 5

Tah1_p address hold time,ALE High 5 ns 5

Tah2_p address hold time,ALE Low 5 ns 5

Tbls1_p PCLK to nBLS[3:0] delay,ALE
High

12 ns 5

Tbls2_p PCLK to nBLS[3:0] delay,ALE
Low

12 ns 5

Tblh1_p PCLK to nBLS[3:0] hold, ALE
High

5 ns 5

Tblh2_p PCLK to nBLS[3:0] hold, ALE
Low

5 ns 5

Tdbe_p DBE to data enable 12 ns 5

Tde_p PCLK to data enable 6 ns 5

Tdbz_p DBE to data disable 20 ns

Tdz_p PCLK to data disable 6 20 ns

Tdout_p PCLK to data out delay 24 ns 5

Tdoh_p PCLK to data out hold 5 5

Tdis_p data in to PCLK setup 2

Tdih_p PCLK to data in hold 5

Tabts_p abort to PCLK setup 8

Tabth1_p PCLK to abort hold 2 6

Tabth2_p PCLK to about hold 5 6

Tmse_p nPREQ and SEQ enable 10

Tmsz_p nMREQ and SEQ disable 20

Tmsd_p nMREQ and SEQ delay 12

Tmsh_p nMREQ and SEQ hold 5

 Table 15-8: ARM810 bus timing using PCLK
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Notes: 1 Only one of MCLK or PCLK is used. The other is tied as described in Chapter 11,
ARM810 Clocking .

2 MCLK, PCLK, and REFCLK timings are measured at 50% of Vdd.
3 The PLL must be configured so that all of these parameters are within allowed limits.

See 11.3.2 Fast clock from the output of the PLL  on page 11-7.
4 In all clocking modes the Fast clock frequency must be greater than or equal to the Bus

clock frequency.
5 The timings of these buses are measured at 50% of Vdd.
6 Tabth1 is required by this device. To ensure compatibility with other ARM processors,

you are advised to make your designs meet Tabth2. Tabth2 is not tested on this device,
and is given as a recommendation only.
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This chapter describes the physical details of the ARM810. The information in this
chapter is provided as a guide only. Refer to your semiconductor vendor for definitive
physical details.

16.1 Physical Details 16-2
16.2 Pinout 16-3

Physical Details16
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16.1 Physical Details

 Figure 16-1: Typical ARM810 144 Pin TQFP mechanical dimensions in mm
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16.2 Pinout

Pin Signal Pin Signal Pin Signal

1 MSE 30 Vss_pad 59 D[30]

2 SEQ 31 D[8] 60 D[31]

3 NMREQ 32 D[9] 61 TDO

4 REFCLKCFG[0] 33 D[10] 62 TCK

5 REFCLKCFG[1] 34 D[11] 63 TMS

6 Vdd_core 35 D[12] 64 nTRST

7 PLLSLEEP 36 D[13] 65 TDI

8 Vss_core 37 D[14] 66 Vdd_pad

9 PLLRANGE 38 D[15] 67 NBLS[0]

10 PLLVDD 39 D[16] 68 Vss_pad

11 PLLFILT2 40 Vdd_pad 69 NBLS[1]

12 PLLFILT1 41 D[17] 70 NBLS[2]

13 PLLGND 42 Vss_pad 71 NBLS[3]

14 NWAIT 43 D[18] 72 NRW

15 REFCLK 44 D[19] 73 MAS[0]

16 Vdd_pad 45 Vdd_core 74 MAS[1]

17 PCLK 46 D[20] 75 CLF

18 MCLK 47 Vss_core 76 LOCK

19 Vss_pad 48 D[21] 77 A[0]

20 DBE 49 D[22] 78 A[1]

21 D[0] 50 D[23] 79 Vdd_pad

22 D[1] 51 D[24] 80 A[2]

23 D[2] 52 Vdd_pad 81 Vss_pad

24 D[3] 53 D[25] 82 A[3]

25 D[4] 54 Vss_pad 83 A[4]

26 D[5] 55 D[26] 84 Vdd_core

27 D[6] 56 D[27] 85 A[5]

28 Vdd_pad 57 D[28] 86 Vss_core

29 D[7] 58 D[29] 87 A[6]
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88 A[7] 107 A[20] 126 Vdd_core

89 A[8] 108 A[21] 127 TESTOUT[2]

90 Vdd_pad 109 A[22] 128 Vss_core

91 A[9] 110 A[23] 129 TESTOUT[3]

92 Vss_pad 111 A[24] 130 TESTOUT[4]

93 A[10] 112 A[25] 131 TESTMODE

94 A[11] 113 A[26] 132 NIRQ

95 A[12] 114 Vdd_pad 133 Vdd_pad

96 Vdd_core 115 A[27] 134 NRESET

97 A[13] 116 Vss_pad 135 Vss_pad

98 Vss_core 117 A[28] 136 NFIQ

99 A[14] 118 A[29] 137 ABORT

100 A[15] 119 A[30] 138 PLLCFG[0]

101 A[16] 120 A[31] 139 PLLCFG[1]

102 Vdd_pad 121 ABE 140 PLLCFG[2]

103 A[17] 122 APE 141 PLLCFG[3]

104 Vss_pad 123 Vcc 142 PLLCFG[4]

105 A[18] 124 TESTOUT[0] 143 PLLCFG[5]

106 A[19] 125 TESTOUT[1] 144 PLLCFG[6]

Pin Signal Pin Signal Pin Signal
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This chapter summarises the changes in ARM810 when compared to previous ARM
processors.

ARM810 will be able to run binary code targetted to earlier processors with only a few
exceptions. The following changes from previous implementations of the ARM should
be noted. See Appendix B, Instruction Set Changes  for a more detailed discussion.

17.1 Instruction Memory Barrier 17-2
17.2 Undefined Instructions 17-2
17.3 PC Offset 17-2
17.4 Write-Back 17-2
17.5 Misaligned PC Loads and Stores 17-2
17.6 Data Aborts 17-2

Backward Compatibility17
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17.1 Instruction Memory Barrier
The requirement for an Instruction Memory Barrier (IMB) instruction means that if code
changes the instruction stream and then tries to execute it without an intervening IMB,
the consequences will be unpredictable. For example, there must be an IMB
instruction between loading code into memory and executing it. See 4.17 The
Instruction Memory Barrier (IMB) Instruction  on page 4-64 for more information.

17.2 Undefined Instructions
In ARM810, most unallocated instruction bit patterns in the instruction set space enter
the Undefined Instruction trap. See 4.18 Undefined Instructions  on page 4-67  for
further information.

17.3 PC Offset
Rare ARM7 instructions which store a R15 value to memory as the address of the
instruction plus an offset of 12 will now either use an offset of 8 instead or will no longer
be valid on ARM8. The following summarises their behaviour on ARM810:

• STR instructions with Rd = R15 store the address of the instruction plus 8
• STM instructions with R15 in the list of registers to be stored store the address

of the instruction plus 8
• Data processing instructions with a register-specified shift and at least one of

Rm and Rn equal to R15 are no longer valid
• MCR instructions with R15 as the source register are no longer valid

17.4 Write-Back
Loading a register with write-back to it will have UNPREDICTABLE effects.

The rules governing whether stores with write-back to the stored register store the
register’s old or new value differ from those of ARM7. See 4.11.6 Inclusion of the
base in the register list  on page 4-42 for further details.

17.5 Misaligned PC Loads and Stores
Misaligned loads or stores of the PC have UNPREDICTABLE effects.

17.6 Data Aborts
In all cases where a data abort occurs, any base register is restored to its original value
(before the instruction started), regardless of whether writeback is specified or not.
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This appendix describes how to use the ARM810 in a 5V TTL system.

A.1 Using the ARM810 in a 5V TTL System A-2

Use of the ARM810 in a 5V TTL
SystemA
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A.1 Using the ARM810 in a 5V TTL System
The ARM810 can be used in a 5V TTL level system. For this application a separate
3.3V supply, connected to VDD, is required. VREF should be connected to the 5V
system power supply as shown in Figure A-1: System power connection .

 Figure A-1: System power connection

In this system, the ARM810 input and output levels are directly TTL compatible. See
Figure A-2: ARM810 inputs driven by TTL outputs  and Figure A-3: ARM810
outputs driving TTL inputs  on page A-3.

 Figure A-2: ARM810 inputs driven by TTL outputs
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 Figure A-3: ARM810 outputs driving TTL inputs
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This Appendix gives an overview of changes to the instruction set when compared to
ARM7.

B.1 General Compatibility B-2
B.2 Instruction Set Differences B-2

Instruction Set ChangesB
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B.1 General Compatibility
Existing code will run subject to all of the restrictions described in all ARM Datasheets
up to ARM810, in addition to those in this data sheet.

As previous code does not have the IMB instructions, some code may not be
compatible in certain circumstances.

For example:

• Code that constructs a routine in memory and then branches to it will be
incompatible unless branch prediction has been turned off, or a calculated
branch was used to get to it.

• Code that constructs a routine in memory, and then falls through to it
sequentially will be incompatible unless the fall-through code instruction has
been constructed at least 12 instructions in advance of its execution.

B.2 Instruction Set Differences
This section describes the instruction set additions and changes that have been made
for ARM810.

B.2.1 New features

An Instruction Memory Barrier (IMB) instruction

This tells the ARM to flush any stored information about the instruction stream, and
must be issued between modifying an instruction area and executing it.

Please refer to 4.17 The Instruction Memory Barrier (IMB) Instruction  on page 4-
64 and Appendix E, Implementing the Instruction Memory Barrier Instruction  for
details.

Half-word and signed byte support

This has been added to the instruction set. Please refer to 4.10 Halfword and Signed
Data Transfer  on page 4-34 for details.

B.2.2 Existing instructions
STM instructions  with base writeback and the base register in the register list

This concerns the order of writeback and reading the value to be stored:

• If the base register is the lowest numbered register in the list, then the
original base value is stored.

• Otherwise, the stored value is undefined at present.

LDM instructions  with base writeback and the base register in the register list

This has no function, since the written-back register value is overwritten by
the loaded value.
The behaviour is now architecturally undefined.

LDR instructions  with writeback which load the base register

The behaviour is already architecturally undefined; see Application Note
A002.

LDRB PC
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The behaviour is already architecturally undefined; see Application Note
A002.

LDR PC from a misaligned address

The behaviour is now architecturally undefined.

STRB PC

The behaviour is architecturally undefined; see Application Note A002.

STR PC to a misaligned address

The behaviour is now architecturally undefined.

STR PC

These were expected to store the address of the instruction plus 12, not the
normal address of instruction plus 8.
These now store the address of instruction plus 8.

STM ...,PC}

These were expected to store the address of the instruction plus 12, not the
normal address of instruction plus 8.
These now store the address of instruction plus 8.

Data processing instructions  that do a register-controlled shift and have either or
both of the main operand registers equal to the PC.

The behaviour is now architecturally undefined.

MCR instructions  (coprocessor register transfers from ARM to coprocessor) with the
PC as the source register.

The behaviour is now architecturally undefined.
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This appendix describes the 26-bit operations on ARM810.

C.1 Introduction C-2
C.2 Instruction Differences C-3
C.3 Performance Differences C-4
C.4 Hardware Compatibility Issues C-4

26-bit Operations on ARM810C
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C.1 Introduction
To maintain compatibility with earlier ARM processors, it is possible to execute code in
26-bit operating modes usr26 , fiq26 , irq26  and svc26 . Details of how to do this have
already been written for earlier ARM processors, and these have been included here
for your information.

This appendix summarises how 26-bit binary code will be able to run on the ARM810
processor. The details below show the instruction and performance differences when
ARM810 is operated in 26-bit modes. The last section describes the hardware
changes that affect 26-bit operation.

Use of 26-bit modes for any reason other than executing existing 26-bit code is
strongly discouraged, as this will no longer be supported in ARM processors after the
ARM810. It is also worth noting that ARM810's performance in 26-bit modes may be
poorer than in 32-bit modes.
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C.2 Instruction Differences
When ARM810 is executing in a 26-bit mode, the top 6 bits of the PC are forced to be
zero at all times. The following restrictions must be obeyed to avoid problems due to
the Prefetch Unit having prefetched an unknown distance beyond the current
instruction:

• Do not enter any 26-bit mode when at an address outside the 26-bit address
space.

• Do not execute code sequentially from address 0x03FFFFFC to address
0x00000000 in 26-bit code.

An additional requirement for 32-bit and 26-bit operations is that if a system contains
code that is intended for execution in both 26-bit and 32-bit modes, an IMB instruction
must accompany any change from any 26-bit mode to any 32-bit mode, and vice
versa. It is therefore advisable to keep code intended for 26-bit modes and code
intended for 32-bit modes completely separate.

26-bit operation removes some of the instruction constraints placed on 32-bit code. 26-
bit code must obey the constraints laid out for 32-bit code with the following exceptions:

1 CMN, CMP, TEQ, TST
A second form of these instructions becomes available, which is encoded in
the instruction  by setting the Rd field to “1111” and in the assembler syntax
by using:

<opcode>{cond}P

in place of the normal

<opcode>{cond}

In all modes, the normal setting of the CPSR flags is suppressed for the  new
form of the instruction. Instead, the normal arithmetic result is calculated
(Op1+Op2, Op1-Op2, Op1 EOR Op2 and Op1 AND Op2 for CMN, CMP,
TEQ and TST respectively) and used to set selected CPSR bits. In user
mode, the N, Z, C and V bits of the CPSR are set to bits 31 to 28 of the
arithmetic result; in non-user modes, the N, Z, C, V, I, F, M1 and M0 bits of the
CPSR are set to bits 31 to 26, 1 and 0 of the arithmetic result.
The CMNP, CMPP, TEQP and TSTP instructions take a base of 3 cycles to
execute, along with the extra cycles listed in 4.5.8 Instruction cycle times  on
page 4-14 for complex and register-specified shifts..

2 Data processing instructions with destination register R15 and the S bit set
These become valid in User mode, and their behaviour in all modes is altered.
In all modes, the normal setting of the CPSR flags from the current mode’s
SPSR is suppressed. In user mode, the N, Z, C and V bits of the CPSR are
set to bits 31 to 28 of the arithmetic result; in non-user  modes, the N, Z, C, V,
I, F, M1 and M0 bits of the CPSR are set to bits 31 to 26, 1 and 0 of the
arithmetic result.

3 LDM with R15 in Register list, and the S bit set
This becomes valid in User mode, and its behaviour in all modes is  altered.
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In all modes, the normal setting of the CPSR flags from the current  mode’s
SPSR is suppressed. In user mode, the N, Z, C and V bits of the CPSR are
set to bits 31 to 28 of the value loaded for R15; in non-user  modes, the N, Z,
C, V, I, F, M1 and M0 bits of the CPSR are set to bits 31 to 26, 1 and 0 of the
value loaded for R15.

4 Address Exceptions
The address exceptions which occur on true 26-bit ARM processors cannot
occur on ARM810. If required, these should now be generated externally to
the ARM810 as aborts, along with an abort handler routine which recognises
the address exception.

Note: Some unusual coding cases may present problems: for example, LDMs and STMs
wrapping around from the top of 26-bit memory space to the bottom. It is thought that
such cases are not in common use, and so should not present any difficulties.

C.3 Performance Differences
This information is provisional at this release of the data sheet. Implementation details
may affect performance.

There is no cycle count performance degradation for operating in 26-bit mode;
the cycle counts are the same as those for 32-bit mode operations. However, there
may be degradation due to the additional software overheads in getting to and from
32-bit-mode-only operations.

C.4 Hardware Compatibility Issues
This section describes the ways in which the ARM810 will differ from previous ARM
processors, as far as its hardware is concerned, for 26-bit compatibility.

This section is up-to-date, but is not necessarily complete.

C.4.1 Configuration
ARM810 will not have the two configuration bits, DATA32  and PROG32 that could be
found on previous ARM610 and ARM710 processors.

As such, the processor's normal mode of operation is in full 32-bit modes: as if both of
these bits were configured in their active HIGH state. Aborts on Read and Write of the
Exception Vectors can be done by the Memory Manager, thus stimulating the original
hardware configurations in software.
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This appendix describes the differences between 32-bit ARM processors and earlier
26-bit ARM processors:

• 32-bit ARM processors are the ARM6 family, and all later processors including
the ARM7 family, the ARM8 family and StrongARM.

• 26-bit ARM processors are ARM2, ARM3 and ARM2aS.

This information is included here for completeness as it provides further details about
the differences between 26-bit and 32-bit codes to that described in Appendix C,
26-bit Operations on ARM810 . The information in the rest of the datasheet
supersedes this appendix.

D.1 Introduction D-2
D.2 The Program Counter and Program Status Register D-2
D.3 Operating Modes D-2
D.4 Instruction Set Changes D-3
D.5 Transferring between 26-bit and 32-bit Modes D-4

Comparisons with 26-bit
ARM ProcessorsD
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D.1 Introduction
The ARM6 family, and all later processors including the ARM7 family, the ARM8 family
and StrongARM, are ARM processors that have 32-bit program counters. Earlier
ARMs (ARM2, ARM3 and ARM2aS) had a 26-bit program counter (PC). This appendix
describes the major differences between the two types of processor.

D.2 The Program Counter and Program Status Register
The introduction of the larger program counter has meant that the flags and control bits
of R15 (the combined PC and PSR) have been moved to a separate register. The extra
space in the new register (the CPSR, Current Program Status Register) allows for
more control bits. A further 3 mode bits have been added to allow for a larger number
of operating modes.

The removal of the PSR to a separate register also means that it is no longer possible
to save these flags automatically in R14 when a Branch with Link (BL) instruction is
executed, or when an exception occurs. Program analysis has shown that the saving
of these flags is only required in 3% of subroutine calls, so there is only a slight
overhead in explicitly saving them on a stack when necessary. To cope with the
requirement of saving them when an exception occurs, 5 further registers have been
provided to hold a copy of the CPSR at the time of the exception. These registers are
the Saved Program Status Registers (SPSRs). There is one SPSR for each of the
modes that the processor may enter as a result of the various types of exception.

The expansion of the PC to 32 bits also means that the Branch instruction, being
limited to +/-32 Mbytes, can no longer specify a branch to the entire program space.
Branches greater than +/-32 Mbytes can be made with other instructions, but the
equivalent of the Branch with Link instruction will require a separate instruction to save
the PC in R14.

D.3 Operating Modes
There are a total of 10 operating modes in two overlapping sets. Four modes—
User26 , IRQ26, FIQ26 and Supervisor26 —allow the processor to behave like earlier
ARM processors with a 26-bit PC. These correspond to the four operating modes of
the ARM2 and ARM3 processors. A further four operating modes correspond to these,
but with the processor running with the full 32-bit PC: these are User32 , IRQ32, FIQ32
and Supervisor32 .

The final two modes are Undefined32  and Abort32 , and are entered when the
Undefined instruction and Abort exceptions occur. They have been added to remove
restrictions on Supervisor mode programs which exist with the ARM2 and ARM3
processors. The two sets of User, FIQ, IRQ and Supervisor modes each share a set
of banked registers to allow them to maintain some private state at all times. The Abort
and Undefined modes also have a pair of banked registers each for the same purpose.
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D.4 Instruction Set Changes
The instruction set is changed in two major areas: new instructions have been
introduced and restrictions have been placed on existing ones.

D.4.1 New Instructions
The new instructions allow access to the CPSR and SPSR registers. They are formed
by using opcodes from the Data Processing group of instructions that were previously
unused. Specifically, these are the TST, TEQ, CMP and CMN instructions with the S
flag clear. They are now known as MSR to move data into the CPSR and SPSR
registers, and MRS to move from the CPSR and SPSR to a general register. The data
moved to CPSR and SPSR can be either the contents of a general register or an
immediate value.

D.4.2 Instruction Set Limitations
When configured for 32-bit program and data space, 32-bit processors support
operation in 26-bit modes for compatibility with ARM processors that have a 26-bit
address space. The 26-bit modes are User26 , FIQ26, IRQ26 and Supervisor26 .
When a 26-bit mode is selected, the programmer’s model reverts to that of existing
26 bit ARMs (ARM2, ARM3, ARM2aS). The behaviour is that of the ARM2aS
macrocell with the following alterations:

• Address exceptions are never generated. The OS may simulate the behaviour
of address exception by using external logic such as a memory management
unit to generate an abort if the 64 Mbyte range is exceeded, and converting
that abort into an “address exception” trap for the application.

Note Address exceptions are still possible when the processor is configured for
26-bit program and data space.

• The new instructions to transfer data between general registers and the
program status registers remain operative. The new instructions can be used
by the operating system to return a 32-bit operating mode after calling a binary
containing code written for a 26-bit ARM.

• All exceptions (including Undefined Instruction and Software Interrupt) return
the processor to a 32-bit mode, so the operating system must be modified to
handle them.

• 32-bit processors include hardware which prevents the write operation and
generates a data abort if the processor attempts to write to a location between
&00000000 and &0000001F inclusive (the exception vectors) when operating
in 26-bit mode. This allows the operating system to intercept all changes to
the exception vectors and redirect the vector to some veneer code. The
veneer code should place the processor in a 26-bit mode before calling the
26-bit exception handler.

In all other respects, 32-bit processors behave like a 26-bit ARM when operating in
26-bit mode. The relevant bits of the CPSR appear to be incorporated back into R15
to form the PC/CPSR with the I and F bits in bits 27 and 26. The instruction set
behaves like that of the ARM2aS macrocell with the addition of the MRS and MSR
instructions.
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D.5 Transferring between 26-bit and 32-bit Modes
A program executing in a privileged 32-bit mode can enter a 26-bit mode by executing
an MSR instruction which alters the mode bits to one of the values shown below:

Transfer between 26-bit and 32-bit mode happens automatically whenever an
exception occurs in 26-bit mode. Note that an exception (including Software Interrupt)
arising in 26-bit mode will enter 32-bit mode and the saved value in R14 will contain
only the PC, even though the PSR was also considered part of R15 when the
exception arose.

In addition, the MSR instruction provides the means for a program in a privileged 26-bit
mode to alter the mode bits to change to a 32-bit mode.

M[4:0] Mode Accessible register set

00000 usr26 PC/PSR, R14..R0, CPSR

00001 fiq26 PC/PSR, R14_fiq..R8_fiq, R7..R0, CPSR, SPSR_fiq

00010 irq26 PC/PSR, R14_irq..R13_fiq, R12..R0, CPSR, SPSR_irq

00011 svc26 PC/PSR, R14_svc..R13_svc, R12..R0, CPSR, SPSR_svc

 Table D-1:  MSR instruction altering  the mode bits
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This appendix  is written to help Operating System designers understand and
implement the IMB Instructions. It firstly describes the generic approach that should be
used for future compatibilty and then goes on to ARM810-specific details.

E.1 Introduction E-2
E.3 Generic IMB Use E-2
E.2 ARM810 IMB Implementation E-2

Implementing the Instruction
Memory Barrier InstructionE
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E.1 Introduction
This appendix describes the processor specific code that must be included in the SWI
handler to implement the two Instruction Memory Barrier ( IMB) Instructions:

• IMB
• IMBRange

These are implemented as calls to specific SWI numbers. Please refer to 4.17 The
Instruction Memory Barrier (IMB) Instruction  on page 4-64  for further details of this
and for examples of use.

Two IMB instructions are provided so that when only a small area of code is altered
before being executed the IMBRange instruction can be used to efficiently and quickly
flush any stored instruction information from addresses within a small range rather
than flushing all information about all instructions using the IMB instruction.
By flushing only the required address range information, the rest of the information
remains to provide improved system performance.

E.2 ARM810 IMB Implementation
For ARM810, executing the SWI instruction is sufficient in itself to cause the IMB
operation. Also, for ARM810, both the IMB and the IMBRange instructions flush all
stored information about the instruction stream.

This means that for ARM810, all IMB instructions can be implemented in the Operating
System by simply returning from the IMB/IMBRange service routine AND that the
service routines can be exactly the same. The following service routine code can be
used for ARM810:

IMB_SWI_handler
IMBRange_SWI_handler

MOVS PC, R14_svc; Return to the code after the SWI call

Note:  It is strongly encouraged that in code from now on, the IMBRange instruction is used
whenever the changed area of code is small: even if there is no distinction between it
and the IMB instruction on ARM810. Future processors may well implement the
IMBRange instruction in a much more efficient and faster manner, and code migrated
from ARM810 will benefit when executed on these processors.

E.3 Generic IMB Use
Using SWI's to implement the IMB instructions means that any code that is written now
will be compatible with any future processors - even if those processors implement
IMB in different ways. This is achieved by changing the Operating System SWI service
routines for each of the IMB SWI numbers that differ from processor to processor.

Below are examples that show what should happen during the execution of  IMB
instructions. These examples are taken from 4.17.3 Examples  on page 4-65.

The pseudo code in the square brackets shows what should happen to execute the
IMB instruction (or IMBRange) in the SWI handler.
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E.3.1 Loading code from disk
Code that loads a program from a disk, and then branches to the entry point of that
program, must execute an IMB instruction between loading the program and trying to
execute it.

IMBEQU 0xF00000

.

.
; code that loads program from disk
.
.
SWI IMB

[branch to IMB service routine]
[perform processor-specific operations to execute IMB]
[return to code]
.

MOV PC, entry_point_of_loaded_program
.
.

E.3.2 Running BitBlt code
“Compiled BitBlt” routines optimise large copy operations by constructing and
executing a copying loop which has been optimised for the exact operation wanted.
When writing such a routine an IMB is needed between the code that constructs the
loop and the actual execution of the constructed loop.

IMBRange EQU 0xF00001

.

.
; code that constructs loop code
; load R0 with the start address of the constructed loop
; load R1 with the end address of the constructed loop
SWI IMBRange

[branch to IMBRange service routine]
[read registers R0 and R1 to set up address range

parameters]
[perform processor-specific operations to execute

IMBRange within address range]
[return to code]

; start of loop code
.
.
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A
Access faults

checking 8-20
Address translation 8-5
ALE pin

use of 12-18

B
Boundary scan register 13-11
BYPASS

public instruction 13-9
Bypass register 13-10

C
CLAMP

public instruction 13-8
CLAMPZ

public instruction 13-8
Cycle speed

bus interface 12-2
Cycle types

bus interface 12-4

D
DC parameters 14-1, 15-1
Device identification code register 13-11
Domain access control 8-19

E
External aborts 8-23
EXTEST

public instruction 13-7

F
Fault address register 8-17
Fault checking 8-20
Fault status register 8-17

H
HIGHZ

public instruction 13-8

I
IDC

Index
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cacheable bit 7-2
disable 7-3
enable 7-3
interaction with MMU and write buff-

er 8-24
operation 7-2
read-lock-write 7-3
reset 7-3
validity 7-2

IDCODE
public instruction 13-8

Instruction register 13-6
Interface signals

boundary scan 13-13
Interrupts 3-8, 3-9, 3-10

M
Memory access

types of 12-29
use of the ALE pin 12-18
use of the nWAIT pin 12-16

MMU
interaction with IDC and write buffer

8-24

N
nWAIT pin

use of 12-16

P
Parameters

DC 14-1, 15-1
Public instructions 13-7
Pullup resistors 13-5

R
Registers

boundary scan interface 13-10
MMU 8-3

Registes
instruction 13-6

S
SAMPLE/PRELOAD

public instruction 13-7
Signal descriptions 2-3

T
Tap controller
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Translating references 8-6
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Write buffer

interaction with MMU and IDC 8-24


