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Preface

ii ARM710 Data Sheet

The ARM710 is a general purpose 32-bit microprocessor with 8kByte cache, write buffer and Memory
Management Unit (MMU) combined in a single chip. The ARM710 offers high-level RISC performance yet
its fully static design ensures minimal power consumption, making it ideal for portable, low-cost systems.

The innovative MMU supports a conventional two-level page-table structure and a number of extensions
which make it ideal for embedded control, UNIX and Object Oriented systems. This results in a high
instruction throughput and impressive real-time interrupt response from a small and cost-effective chip.

Applications
■ Personal computer devices e.g.PDAs
■ High-performance, real-time control systems
■ Portable telecommunications
■ Data communications equipment
■ Consumer products
■ Automotive

Feature Summary
■ High performance RISC

25 MIPS sustained @ 33 MHz (33 MIPS peak)

■ Fast sub-microsecond interrupt response
for real-time applications

■ Memory Management Unit (MMU)
support for virtual memory systems

■ Excellent high-level language support
■ 8kByte of instruction & data cache
■ Big and Little Endian operating modes
■ Write Buffer

enhancing performance

■ IEE 1149.1 Boundary scan
■ Fully static operation, low power consumption

ideal for power sensitive applications

■ 144 Thin Quad Flat Pack (TQFP) package
■ Low-power CMOS process

1.5mA/MHz@3.3V

■ 3V and 5V operation
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1.0 Introduction

ARM710 is a general purpose 32-bit microprocessor with 8kByte cache, enlarged write buffer and Memory
Management Unit (MMU) combined in a single chip. The CPU within ARM710 is the ARM7. The ARM710
is software compatible with the ARM processor family and can be used with ARM support chips.

The ARM710 architecture is based on 'Reduced Instruction Set Computer' (RISC) principles, and the
instruction set and related decode mechanism are greatly simplified compared with microprogrammed
'Complex Instruction Set Computers' (CISC).

The on-chip mixed data and instruction cache together with the write buffer substantially raise the average
execution speed and reduce the average amount of memory bandwidth required by the processor. This
allows the external memory to support additional processors or Direct Memory Access (DMA) channels
with minimal performance loss.

The MMU supports a conventional two-level page-table structure and a number of extensions which make
it ideal for embedded control, UNIX and Object Oriented systems.

The instruction set comprises ten basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and multiplier to perform
high-speed operations on the data in a bank of 31 registers, each 32 bits wide;

• Three classes of instruction control data transfer between memory and the registers, one optimised
for flexibility of addressing, another for rapid context switching and the third for swapping data;

• Two instructions control the flow and privilege level of execution; and

• Three types are dedicated to the control of external coprocessors which allow the functionality of
the instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level languages. Where
required for critical code segments, assembly code programming is also straightforward, unlike some RISC
processors which depend on sophisticated compiler technology to manage complicated instruction
interdependencies.

The memory interface has been designed to allow the performance potential to be realised without
incurring high costs in the memory system. Speed-critical control signals are pipelined to allow system
control functions to be implemented in standard low-power logic, and these control signals permit the
exploitation of paged mode access offered by industry standard DRAMs.

ARM710 is a fully static part and has been designed to minimise its power requirements. This makes it ideal
for portable applications where both these features are essential.

Datasheet Notation:

0x - marks a Hexadecimal quantity
BOLD - external signals are shown in bold capital letters
binary - where it is not clear that a quantity is binary it is followed by the word binary



ARM710 Data Sheet

2

ARM710 is a variant of the ARM700, differing from that device in the following respects:

• no external coprocessor bus interface

• dedicated chip test port added

• device packaging

ARM710 is an enhanced and updated ARM610, differing from that device in the following respects:

• cache size increased from 4kB to 8kB

• increased maximum clock frequency

• improved write buffer

• enlarged Translation Lookaside Buffer (TLB) in MMU
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1.1 Block Diagram

 Figure 1: ARM710 Block Diagram
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1.2 Functional Diagram

 Figure 2: Functional Diagram

nIRQ

nFIQInterrupts

nRESET

SnA

FCLK

MCLK

nWAIT

Clocks

VDD

VSS
Power

TCK

TDI

TDO

TMS

nTRST

JTAG

nRW

nBW

LOCK

D[31:0]

A[31:0]
Address

Bus

Data
Bus

Control
Bus

nMREQ

SEQ

ABORT

Memory
Interface

Chip
Test

Test

ARM710

TESTOUT[2:0]

TESTIN[16:0]

ABE

DBE

ALE

MSE

Bus
Controls



Signal Description

5

2.0 Signal Description

Name Type Description

A[31:0] OCZ Address Bus. This bus signals the address requested for memory accesses. Normally it
changes during MCLK HIGH.

ABE IC Address bus enable. When this input is LOW, the address bus A[31:0], nRW, nBW and
LOCK are put into a high impedance state (Note 1).

ABORT IC External abort. Allows the memory system to tell the processor that a requested access has
failed. Only monitored when ARM710 is accessing external memory.

ALE IC Address latch enable. This input is used to control transparent latches on the address bus
A[31:0], nBW, nRW & LOCK. Normally these signals change during MCLK HIGH, but
they may be held by driving ALE LOW. See Section 13.2.1: Tald Measurement on page
120.

D[31:0] ICOCZ Data bus. These are bi-directional signal paths used for data transfers between the proces-
sor and external memory. For read operations (when nRW is LOW), the input data must
be valid before the falling edge of MCLK. For write operations (when nRW is HIGH), the
output data will become valid while MCLK is LOW. At high clock frequencies the data
may not become valid until just after the MCLK rising edge (see Section 13.3: Main Bus
Signals on page 121).

DBE IC Data bus enable. When this input is LOW, the data bus, D[31:0] is put into a high imped-
ance state (Note 1). The drivers will always be high impedance except during write opera-
tions, and DBE must be driven HIGH in systems which do not require the data bus for
DMA or similar activities.

FCLK ICK Fast clock input. When the ARM710 CPU is accessing the cache or performing an inter-
nal cycle, it is clocked with the Fast Clock, FCLK.

LOCK OCZ Locked operation. LOCK is driven HIGH, to signal a “locked” memory access sequence,
and the memory manager should wait until LOCK goes LOW before allowing another
device to access the memory. LOCK changes while MCLK is HIGH and remains HIGH
during the locked memory sequence. LOCK is latched by ALE.

MCLK ICK Memory clock input. This clock times all ARM710 memory accesses. The LOW or HIGH
period of MCLK may be stretched for slow peripherals; alternatively, the nWAIT input
may be used with a free-running MCLK to achieve similar effects.

MSE IC Memory request/sequential enable. When this input is LOW, the nMREQ and SEQ out-
puts are put into a high impedance state (Note 1).

nBW OCZ Not byte / word. An output signal used by the processor to indicate to the external mem-
ory system when a data transfer of a byte length is required. nBW is HIGH for word
transfers and LOW for byte transfers, and is valid for both read and write operations. The
signal changes while MCLK is HIGH. nBW is latched by ALE.

nFIQ IC Not fast interrupt request. If FIQs are enabled, the processor will respond to a LOW level
on this input by taking the FIQ interrupt exception. This is an asynchronous, level-sensi-
tive input, and must be held LOW until a suitable response is received from the processor.

Table 1: Signal Descriptions
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nIRQ IC Not interrupt request. As nFIQ, but with lower priority. May be taken LOW asynchro-
nously to interrupt the processor when the IRQ enable is active.

nMREQ OCZ Not memory request. A pipelined signal that changes while MCLK is LOW to indicate
whether or not in the following cycle, the processor will be accessing external memory.
When nMREQ is LOW, the processor will be accessing external memory

nRESET IC Not reset. This is a level sensitive input which is used to start the processor from a known
address. A LOW level will cause the current instruction to terminate abnormally, and the
on-chip cache, MMU, and write buffer to be disabled. When nRESET is driven HIGH, the
processor will re-start from address 0. nRESET must remain LOW for at least 2 full FCLK
cycles or 5 full MCLK cycles which ever is greater. While nRESET is LOW the processor
will perform idle cycles with incrementing addresses and nWAIT must be HIGH.

nRW OCZ Not read/write. When HIGH this signal indicates a processor write operation; when
LOW, a read. The signal changes while MCLK is HIGH. nRW is latched by ALE.

nTRST IC Test interface reset. Note this signal does NOT have an internal pullup resistor. This signal
must be pulsed or driven LOW to achieve normal device operation, in addition to the nor-
mal device reset (nRESET).

nWAIT IC Not wait. When LOW this allows extra MCLK cycles to be inserted in memory accesses. It
must change during the LOW phase of the MCLK cycle to be extended.

SEQ OCZ Sequential address. This signal is the inverse of nMREQ, and is provided for compatibil-
ity with existing ARM memory systems.

SnA IC Synchronous / not Asynchronous. This signal determines the bus interface mode and
should be wired HIGH or LOW depending on the desired relationship between FCLK
and MCLK in the application. See Chapter 10.0: Bus Interface.

TEST
IN[16:0]

IC Test bus input. This bus is used for off-board testing of the device. When the device is fit-
ted to a circuit all these signals must be tied LOW.

TEST
OUT[2:0]

OCZ Test bus output. This bus is used for off-board testing of the device. When the device is fit-
ted to a circuit and all the TESTIN[16:0] signals are driven LOW, these three outputs will
be driven LOW. Note that these signals may not be tristated, except via the JTAG test port.

TCK IC Test interface reference Clock. This times all the transfers on the JTAG test interface.

TDI IC Test interface data input. Note this signal does not have an internal pullup resistor.

TDO OCZ Test interface data output. Note this signal does not have an internal pullup resistor.

TMS IC Test interface mode select. Note this signal does not have an internal pullup resistor.

VDD Positive supply. 15 pins are allocated to VDD in the 144 PQFP package.

VSS Ground supply. 15 pins are allocated to VSS in the 144 PQFP package.

Name Type Description

Table 1: Signal Descriptions
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Notes:

1. When output pads are placed in the high impedance state for long periods, care must be taken to
ensure that they do not float to an undefined logic level, as this can dissipate power, especially in
the pads.

Key to Signal Types: IC - Input, CMOS threshold
OCZ - Output, CMOS levels, tri-stateable
ICOCZ - Input/output tri-stateable, CMOS thresholds
ICK - Clock input, CMOS levels
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3.0 Programmer's Model

ARM710 supports a variety of operating configurations. Some are controlled by register bits and are known
as the register configurations. Others may be controlled by software and these are known as operating modes.

3.1 Register Configuration

The ARM710 processor provides 3 register configuration settings which may be changed while the
processor is running and which are discussed below.

3.1.1 Big and Little Endian (the bigend bit)

The bigend bit in the Control Register sets whether the ARM710 treats words in memory as being stored in
Big Endian or Little Endian format. See Chapter 5.0: Configuration for more information on the Control
Register. Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold
the first stored word, bytes 4 to 7 the second and so on.

In the Little Endian scheme the lowest numbered byte in a word is considered to be the least significant byte
of the word and the highest numbered byte is the most significant. Byte 0 of the memory system should be
connected to data lines 7 through 0 (D[7:0]) in this scheme.

In the Big Endian scheme the most significant byte of a word is stored at the lowest numbered byte and the
least significant byte is stored at the highest numbered byte. Byte 0 of the memory system should therefore
be connected to data lines 31 through 24 (D[31:24]). Load and store are the only instructions affected by the
endian-ness: see Section 4.7: Single data transfer (LDR, STR) on page 36 for more details.

Little Endian

Higher Address 31              24 23               16 15               8 7                0 Word Address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

Lower Address

  •   Least significant byte is at lowest address

  •   Word is addressed by byte address of least significant byte

 Figure 3: Little Endian addresses of bytes within words
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3.1.2 Configuration Bits for Backward Compatibility

The other two configuration bits, prog32 and data32, are used for backward compatibility with earlier ARM
processors (see 16.0: Appendix - Backward Compatibility) but should normally be set to 1. This configuration
extends the address space to 32 bits, introduces major changes in the programmer's model as described
below, and provides support for running existing 26 bit programs in the 32 bit environment. This mode is
recommended for compatibility with future ARM processors and all new code should be written to use
only the 32 bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32 bit operation there are
certain additional restrictions which programmers must be aware of. These are indicated in the text by the
words shall and shall not. Reference should also be made to the ARM Application Notes “Rules for ARM Code
Writers” and “Notes for ARM Code Writers”, available from your supplier.

3.2 Operating Mode Selection

ARM710 has a 32 bit data bus and a 32 bit address bus. The processor supports byte (8 bit) and word (32 bit)
data tyoes, where words must be aligned to four byte boundaries. Instructions are exactly one word, and
data operations (eg ADD) are only performed on word quantities. Load and store operations can transfer
either bytes or words.

Big Endian

Higher Address 31              24 23               16 15               8 7                0 Word Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

Lower Address

  •   Most significant byte is at lowest address

  •   Word is addressed by byte address of most significant byte

 Figure 4: Big Endian addresses of bytes within words
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ARM710 supports six modes of operation:

(1) User mode (usr): the normal program execution state

(2) FIQ mode (fiq): designed to support a data transfer or channel process

(3) IRQ mode (irq): used for general purpose interrupt handling

(4) Supervisor mode (svc): a protected mode for the operating system

(5) Abort mode (abt): entered after a data or instruction prefetch abort

(6) Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by external interrupts or
exception processing. Most application programs will execute in User mode. The other modes, known as
privileged modes, will be entered to service interrupts or exceptions or to access protected resources.

3.3 Registers

 The processor has a total of 37 registers made up of 31 general 32 bit registers and 6 status registers. At any
one time 16 general registers (R0 to R15) and one or two status registers are visible to the programmer. The
visible registers depend on the processor mode. The other registers, known as the banked registers, are
switched in to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. Figure 5: Register
Organisation shows how the registers are arranged, with the banked registers shaded.

In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15 are general purpose and
may be used to hold data or address values. Register R15 holds the Program Counter (PC). When R15 is
read, bits [1:0] are zero and bits [31:2] contain the PC. A seventeenth register (the CPSR - Current Program
Status Register) is also accessible. It contains condition code flags and the current mode bits and may be
thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch and Link instruction
is executed. It may be treated as a general purpose register at all other times. R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are used similarly to hold the return values of R15 when interrupts and exceptions
arise, or when Branch and Link instructions are executed within interrupt or exception routines.
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 Figure 5: Register Organisation

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ programs will not need
to save any registers. User mode, IRQ mode, Supervisor mode, Abort mode and Undefined mode each have
two banked registers mapped to R13 and R14. The two banked registers allow these modes to each have a
private stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode programs which
require more than these two banked registers are expected to save some or all of the caller's registers (R0 to
R12) on their respective stacks. They are then free to use these registers which they will restore before
returning to the caller. In addition there are also five SPSRs (Saved Program Status Registers) which are
loaded with the CPSR when an exception occurs. There is one SPSR for each privileged mode.
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 Figure 6: Format of the Program Status Registers (PSRs)

The format of the Program Status Registers is shown in Figure 6: Format of the Program Status Registers
(PSRs). The N, Z, C and V bits are the condition code flags. The condition code flags in the CPSR may be
changed as a result of arithmetic and logical operations in the processor and may be tested by all
instructions to determine if the instruction is to be executed.

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it is set and the F bit
disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these
determine the mode in which the processor operates. The interpretation of the mode bits is shown in Table
2: The Mode Bits. Not all bit combinations define a valid processor mode. Only those explicitly described
shall be used. The user should be aware that if any illegal value is programmed into the mode bits, M[4:0],
the processor will enter an unrecoverable state.  If this occurs, reset should be applied.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as the control bits. These
will change when an exception arises and in addition can be manipulated by software when the processor
is in a privileged mode. Unused bits in the PSRs are reserved and their state shall be preserved when
changing the flag or control bits. Programs shall not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future processors.

M[4:0] Mode  Accessible register set

 10000 User PC, R14..R0  CPSR

 10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 IRQ PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 Supervisor PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 Abort PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 Undefined PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

Table 2: The Mode Bits

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control
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3.4 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to be broken, so that
(for example) the processor can be diverted to handle an interrupt from a peripheral. The processor state
just prior to handling the exception must be preserved so that the original program can be resumed when
the exception routine has completed. Many exceptions may arise at the same time.

ARM710 handles exceptions by making use of the banked registers to save state. The old PC and CPSR
contents are copied into the appropriate R14 and SPSR and the PC and mode bits in the CPSR bits are forced
to a value which depends on the exception. Interrupt disable flags are set where required to prevent
otherwise unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler, R14 and the
SPSR should be saved onto a stack in main memory before re-enabling the interrupt; when transferring the
SPSR register to and from a stack, it is important to transfer the whole 32 bit value, and not just the flag or
control fields. When multiple exceptions arise simultaneously, a fixed priority determines the order in
which they are handled. This is listed later in Section 3.4.7: Exception Priorities on page 17.

3.4.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ input LOW. This
input can except asynchronous transitions, and is delayed by one clock cycle for synchronisation before it
can affect the processor execution flow. FIQ is designed to support a data transfer or channel process, and
has sufficient private registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the F flag in the CPSR
(but note that this is not possible from User mode). If the F flag is clear, ARM710 checks for a LOW level on
the output of the FIQ synchroniser at the end of each instruction.

When a FIQ is detected, ARM710:

(1) Saves the address of the next instruction to be executed plus 4 in R14_fiq; saves CPSR in SPSR_fiq

(2) Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC (from R14) and the
CPSR (from SPSR_fiq) and resume execution of the interrupted code.

3.4.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on the nIRQ input. It
has a lower priority than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the I bit in the CPSR (but note that this is not possible from User mode). If the I
flag is clear, ARM710 checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction. When an IRQ is detected, ARM710:
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(1) Saves the address of the next instruction to be executed plus 4 in R14_irq; saves CPSR in SPSR_irq

(2) Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC and the CPSR and
resume execution of the interrupted code.

3.4.3 Abort

An abort can be signalled by either the internal Memory Management Unit or from the external ABORT
input. ABORT indicates that the current memory access cannot be completed. For instance, in a virtual
memory system the data corresponding to the current address may have been moved out of memory onto
a disc, and considerable processor activity may be required to recover the data before the access can be
performed successfully. ARM710 checks for aborts during memory access cycles. When successfully
aborted ARM710 will respond in one of two ways:

(1) If the abort occurred during an instruction prefetch (a Prefetch Abort), the prefetched instruction is
marked as invalid but the abort exception does not occur immediately. If the instruction is not
executed, for example as a result of a branch being taken while it is in the pipeline, no abort will
occur. An abort will take place if the instruction reaches the head of the pipeline and is about to be
executed.

(2)  If the abort occurred during a data access (a Data Abort), the action depends on the instruction type.

(a)  Single data transfer instructions (LDR, STR) will write back modified base registers and the Abort
handler must be aware of this.

(b) The swap instruction (SWP) is aborted as though it had not executed, though externally the read
access may take place.

(c) Block data transfer instructions (LDM, STM) complete, and if write-back is set, the base is updated.
If the instruction would normally have overwritten the base with data (i.e. LDM with the base in
the transfer list), this overwriting is prevented. All register overwriting is prevented after the Abort
is indicated, which means in particular that R15 (which is always last to be transferred) is preserved
in an aborted LDM instruction.

When either a prefetch or data abort occurs, ARM710:

(1) Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for data aborts) in
R14_abt; saves CPSR in SPSR_abt.

(2) Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

(3) Forces the PC to fetch the next instruction from either address 0x0C (prefetch abort) or address 0x10
(data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch abort) or SUBS
PC,R14_abt,#8 (for a data abort). This will restore both the PC and the CPSR and retry the aborted
instruction.
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The abort mechanism allows a demand paged virtual memory system to be implemented when suitable
memory management software is available. The processor is allowed to generate arbitrary addresses, and
when the data at an address is unavailable the MMU signals an abort. The processor traps into system
software which must work out the cause of the abort, make the requested data available, and retry the
aborted instruction. The application program needs no knowledge of the amount of memory available to
it, nor is its state in any way affected by the abort.

Note that there are restrictions on the use of the external abort signal. See Chapter 9.0: Memory Management
Unit (MMU).

3.4.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode, usually to request a
particular supervisor function. When a SWI is executed, ARM710:

(1) Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in SPSR_svc

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and return to the
instruction following the SWI.

3.4.5 Undefined instruction trap

When the ARM710 comes across an instruction which it cannot handle (see Chapter 4.0: Instruction Set), it
will take the undefined instruction trap. This includes all coprocessor instructions, except MCR and MRC
operations which access the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does not have the
coprocessor hardware, or for general purpose instruction set extension by software emulation.

When ARM710 takes the undefined instruction trap it:

(1) Saves the address of the Undefined or coprocessor instruction plus 4 in R14_und; saves CPSR in
SPSR_und.

(2) Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und. This will restore the
CPSR and return to the instruction following the undefined instruction.
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3.4.6 Vector Summary

These are byte addresses, and will normally contain a branch instruction pointing to the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and execution time of) a
branch instruction.

3.4.7 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they
will be handled:

(1) Reset (highest priority)

(2) Data abort

(3) FIQ

(4) IRQ

(5) Prefetch abort

(6) Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software interrupt are mutually
exclusive since they each correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag in the CPSR is clear),
ARM710 will enter the data abort handler and then immediately proceed to the FIQ vector. A normal return
from FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than
FIQ is necessary to ensure that the transfer error does not escape detection; the time for this exception entry
should be added to worst case FIQ latency calculations.

Address  Exception Mode on entry

0x00000000  Reset Supervisor

0x00000004  Undefined instruction Undefined

0x00000008  Software interrupt Supervisor

0x0000000C  Abort (prefetch) Abort

0x00000010  Abort (data) Abort

0x00000014  -- reserved --    --

0x00000018  IRQ IRQ

0x0000001C  FIQ FIQ

Table 3: Vector Summary
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3.4.8 Interrupt Latencies

Calculating the worst case interrupt latency for the ARM710 is quite complex due to the cache, MMU and
write buffer and is dependant on the configuration of the whole system. Please see Application Note -
Calculating the ARM710 Interrupt Latency.

3.5 Reset

When the nRESET signal goes LOW, ARM710 abandons the executing instruction and then performs idle
cycles from incrementing word addresses.

When nRESET goes HIGH again, ARM710 does the following:

(1) Overwrites R14_svc and SPSR_svc by copying the current values of the PC and CPSR into them.
The value of the saved PC and CPSR is not defined.

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR.

(3) Forces the PC to fetch the next instruction from address 0x00

At the end of the reset sequence, the MMU is disabled and the TLB is flushed, so forces “flat” translation
(i.e. the physical address is the virtual address, and there is no permission checking); alignment faults are
also disabled; the cache is disabled and flushed; the write buffer is disabled and flushed; the ARM7 CPU
core is put into 26 bit data and address mode and little-endian mode.
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4.0 Instruction Set

4.1 Instruction Set Summary

A summary of the ARM710 instruction set is shown in Figure 7: Instruction Set Summary.

Note: some instruction codes are not defined but do not cause the Undefined instruction trap to be taken,
for instance a Multiply instruction with bit 6 changed to a 1. These instructions shall not be used,
as their action may change in future ARM implementations.

 Figure 7: Instruction Set Summary
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4.2 The Condition Field

 Figure 8: Condition Codes

All ARM710 instructions are conditionally executed, which means that their execution may or may not take
place depending on the values of the N, Z, C and V flags in the CPSR. The condition encoding is shown in
Figure 8: Condition Codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of the flags. The never
(NV) class of condition codes shall not be used as they will be redefined in future variants of the ARM
architecture. If a NOP is required,  MOV R0,R0 should be used. The assembler treats the absence of a
condition code as though always had been specified.

The other condition codes have meanings as detailed in Figure 8: Condition Codes, for instance code 0000
(EQual) causes the instruction to be executed only if the Z flag is set. This would correspond to the case
where a compare (CMP) instruction had found the two operands to be equal. If the two operands were
different, the compare instruction would have cleared the Z flag and the instruction will not be executed.

Cond

31 28 27 0

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never
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4.3 Branch and Branch with link (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 9: Branch Instructions.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended
to 32 bits, and added to the PC. The instruction can therefore specify a branch of +/- 32Mbytes. The branch
offset must take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the
current instruction.

 Figure 9: Branch Instructions

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has been previously
loaded into a register. In this case the PC should be manually saved in R14 if a Branch with Link type
operation is required.

4.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value
written into R14 is adjusted to allow for the prefetch, and contains the address of the instruction following
the branch and link instruction. Note that the CPSR is not saved with the PC.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or
LDM Rn!,{..PC} if the link register has been saved onto a stack pointed to by Rn.

4.3.2 Instruction Cycle Times

Branch and Branch with Link instructions take 3 instruction fetches. For more information see Section 4.17:
Instruction Speed Summary on page 64.

4.3.3 Assembler syntax

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will not be affected by the
instruction.

{cond} is a two-character mnemonic as shown in Figure 8: Condition Codes (EQ, NE, VS etc). If absent then
AL (ALways) will be used.

Cond 101 L offset

31 28 27 25 24 23 0

Link bit
0 = Branch
1 = Branch with Link

Condition field
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<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

4.3.4 Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect of PC offset)
B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred if R1
BEQ fred ; was zero otherwise continue to next instruction

BL sub+ROM ; call subroutine at computed address

ADDS R1,#1 ; add 1 to register 1, setting CPSR flags on the
BLCC sub ; result then call subroutine if the C flag is clear,

; which will be the case unless R1 held 0xFFFFFFFF
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4.4 Data processing

The instruction is only executed if the condition is true, defined at the beginning of this chapter. The
instruction encoding is shown in Figure 10: Data Processing Instructions.

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm) or
a rotated 8 bit immediate value (Imm) according to the value of the I bit in the instruction. The condition
codes in the CPSR may be preserved or updated as a result of this instruction, according to the value of the
S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are
used only to perform tests and to set the condition codes on the result and always have the S bit set. The
instructions and their effects are listed in Table 4: ARM Data Processing Instructions.

 Figure 10: Data Processing Instructions

Cond 00 I OpCode Rn Rd Operand 2

011121516192021242526272831

Destination register
1st operand register
Set condition codes

Operation Code

0 = do not alter condition codes
1 = set condition codes

0000 = AND - Rd:= Op1 AND Op2

0010 = SUB - Rd:= Op1 - Op2
0011 = RSB - Rd:= Op2 - Op1
0100 = ADD - Rd:= Op1 + Op2
0101 = ADC - Rd:= Op1 + Op2 + C
0110 = SBC - Rd:= Op1 - Op2 + C
0111 = RSC - Rd:= Op2 - Op1 + C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2
1100 = ORR - Rd:= Op1 OR Op2
1101 = MOV - Rd:= Op2
1110 = BIC - Rd:= Op1 AND NOT Op2
1111 = MVN - Rd:= NOT Op2

Immediate Operand
0 = operand 2 is a register

1 = operand 2 is an immediate value

Shift Rm

Rotate

S

Unsigned 8 bit immediate value

2nd operand register
shift applied to Rm

shift applied to Imm

Imm

Condition field

11 8 7 0

03411

0001 = EOR - Rd:= Op1 EOR Op2

- 1
- 1
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4.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical operations (AND,
EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand
or operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will
be unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to
the logical value of bit 31 of the result.

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit
integer (either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not
R15) the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if
the operands were considered unsigned, but warns of a possible error if the operands were 2's complement
signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the
result was zero, and the N flag will be set to the value of bit 31 of the result (indicating a negative result if
the operands are considered to be 2's complement signed).

Assembler
Mnemonic

OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

MOV 1101 operand2                          (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2         (Bit clear)

MVN 1111 NOT operand2                 (operand1 is ignored)

Table 4: ARM Data Processing Instructions
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4.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled
by the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in
an immediate field in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in Figure 11: ARM Shift Operations.

 Figure 11: ARM Shift Operations

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value
from 0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount
to a more significant position. The least significant bits of the result are filled with zeros, and the high bits
of Rm which do not map into the result are discarded, except that the least significant discarded bit becomes
the shifter carry output which may be latched into the C bit of the CPSR when the ALU operation is in the
logical class (see above). For example, the effect of LSL #5 is shown in Figure 12: Logical Shift Left.

 Figure 12: Logical Shift Left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The
contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant positions in the
result. LSR #5 has the effect shown in Figure 13: Logical Shift Right.

0 0 1Rs

11 8 7 6 5 411 7 6 5 4

Shift type

Shift amount
5 bit unsigned integer

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift type

Shift register

00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift amount specified in
bottom byte of Rs

0 0 0 0 0

contents of Rm

value of operand 2

31 27 26 0

carry out
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 Figure 13:  Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32,
which has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is
the same as logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL
#0, and allow LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31
of Rm instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown
in Figure 14: Arithmetic Shift Right.

 Figure 14: Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm
is again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is
therefore all ones or all zeros, according to the value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right operation by
reintroducing them at the high end of the result, in place of the zeros used to fill the high end in logical right
operations. For example, ROR #5 is shown in Figure 15: Rotate Right.

contents of Rm

value of operand 2

31 0

carry out

0 0 0 0 0

5 4

contents of Rm

value of operand 2

31 0

carry out

5 430
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 Figure 15: Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of
the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity
formed by appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure
16: Rotate Right Extended.

 Figure 16: Rotate Right Extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any
general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of
the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified
shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

(1) LSL by 32 has result zero, carry out equal to bit 0 of Rm.

(2) LSL by more than 32 has result zero, carry out zero.

(3) LSR by 32 has result zero, carry out equal to bit 31 of Rm.

(4) LSR by more than 32 has result zero, carry out zero.

(5) ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

contents of Rm

value of operand 2

31 0

carry out

5 4

contents of Rm

value of operand 2

31 0

carry
out

1

C
in
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(6) ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

(7) ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32;
therefore repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit
will cause the instruction to be a multiply or undefined instruction.

4.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value
in the rotate field. This enables many common constants to be generated, for example all powers of 2.

4.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU
flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and
the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding
to the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and
CPSR. This form of instruction shall not be used in User mode.

4.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the
shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the
shift amount the PC will be 12 bytes ahead.

4.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the CPSR. An assembler shall
always set the S flag for these instructions even if it is not specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the 32 bit modes, the PSR
transfer operations should be used instead. If used in these modes, its effect is to move SPSR_<mode> to
CPSR if the processor is in a privileged mode and to do nothing if in User mode.

4.4.7 Instruction Cycle Times

Data Processing instructions vary in the number of  incremental cycles taken as follows:

Normal Data Processing 1 instruction fetch

Data Processing with register specified shift 1 instruction fetch + 1 internal cycle

Data Processing with PC written 3 instruction fetches
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Data Processing with register specified shift and PC written

 3 instruction fetches and 1 internal cycle

See Section 4.17: Instruction Speed Summary on page 64 for more information.

4.4.8 Assembler syntax

(1) MOV,MVN - single operand instructions

<opcode>{cond}{S} Rd,<Op2>

(2) CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

(3) AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or,<#expression>

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to match the
expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same code.)

4.4.9 Examples

ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5

TEQS R4,#3 ; test R4 for equality with 3
; (the S is in fact redundant as the
; assembler inserts it automatically)

SUB R4,R5,R7,LSR R2 ; logical right shift R7 by the number in
; the bottom byte of R2, subtract result
; from R5, and put the answer into R4

MOV PC,R14 ; return from subroutine

MOVS PC,R14 ; return from exception and restore CPSR
  from SPSR_mode
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4.5 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter.

The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is
shown in Figure 17: PSR Transfer.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of
the CPSR or SPSR_<mode> to be moved to a general register. The MSR instruction allows the contents of a
general register to be moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition
code flags (N,Z,C and V) of CPSR or SPSR_<mode> without affecting the control bits. In this case, the top
four bits of the specified register contents or 32 bit immediate value are written to the top four bits of the
relevant PSR.

4.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the condition code flags of
the CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR_fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User mode, since no such register
exists.
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 Figure 17: PSR Transfer
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4.5.2 Reserved bits

Only eleven bits of the PSR are defined in ARM710 (N,Z,C,V,I,F & M[4:0]); the remaining bits (PSR[27:8,5])
are reserved for use in future versions of the processor. To ensure the maximum compatibility between
ARM710 programs and future processors, the following rules should be observed:

(1) The reserved bits shall be preserved when changing the value in a PSR.

(2) Programs shall not rely on specific values from the reserved bits when checking the PSR status,
since they may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register;
this involves transferring the appropriate PSR register to a general register using the MRS instruction,
changing only the relevant bits and then transferring the modified value back to the PSR register using the
MSR instruction.

e.g. The following sequence performs a mode change:

MRS R0,CPSR ; take a copy of the CPSR
BIC R0,R0,#0x1F ; clear the mode bits
ORR R0,R0,#new_mode ; select new mode
MSR CPSR,R0 ; write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the
flag bits without disturbing the control bits. e.g. The following instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#0xF0000000 ; set all the flags regardless of
; their previous state (does not
; affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since such an operation
cannot preserve the reserved bits.

4.5.3 Instruction Cycle Times

PSR Transfers take 1 instruction fetch. For more information see Section 4.17: Instruction Speed Summary on
page 64.

4.5.4 Assembler syntax

(1) MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

(2) MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

(3) MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V flags respectively.
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(4) MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written
to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

Rd and Rm are expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

Where <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

4.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA
;   (i.e. set N,C; clear Z,V)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0]  <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]

MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5
;   (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

MSR SPSR_all,Rm ; SPSR_<mode>[31:0]  <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC
;   (i.e. set N,Z; clear C,V)

MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]
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4.6 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 18: Multiply Instructions.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to perform integer
multiplication. They give the least significant 32 bits of the product of two 32 bit operands, and may be used
to synthesize higher precision multiplications.

 Figure 18: Multiply Instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be set to zero for
compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD instruction in some
circumstances.

Both forms of the instruction work on operands which may be considered as signed (2’s complement) or
unsigned integers.
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4.6.1 Operand Restrictions

Due to the way multiplication was implemented, certain combinations of operand registers should be
avoided. (The assembler will issue a warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the operand register (Rm), as Rd is used to hold
intermediate values and Rm is used repeatedly during multiply. A MUL will give a zero result if RM=Rd,
and an MLA will give a meaningless result. R15 shall not be used as an operand or as the destination
register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

4.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The N (Negative) and Z
(Zero) flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if
the result is zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

4.6.3 Instruction Cycle Times

The Multiply instructions take 1 instruction fetch and m internal cycles. For more information see section
4.17 Instruction Speed Summary on page 64.

m is the number of cycles required by the multiply algorithm, which is determined by the contents of
Rs. Multiplication by any number between 2^(2m-3) and 2^(2m-1)-1   takes 1S+mI cycles for
1<m>16. Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any number greater than
or equal to 2^(29) takes 1S+16I cycles. The maximum time for any multiply is thus 1S+16I cycles.

4.6.4 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S}    - set condition codes if S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

4.6.5 Examples

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; conditionally R1:=R2*R3+R4,

; setting condition codes
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4.7 Single data transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 19: Single Data Transfer Instructions.

The single data transfer instructions are used to load or store single bytes or words of data. The memory
address used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.
The result of this calculation may be written back into the base register if `auto-indexing' is required.

 Figure 19:  Single Data Transfer Instructions
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4.7.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a
second register (possibly shifted in some way). The offset may be added to (U=1) or subtracted from (U=0)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=1) or after
(post-indexed, P=0) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may
be written back into the base (W=1), or the old base value may be kept (W=0). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained
by setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The
only use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit
forces non-privileged mode for the transfer, allowing the operating system to generate a user address in a
system where the memory management hardware makes suitable use of this hardware.

4.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section. However, the register
specified shift amounts are not available in this instruction class. See Section 4.4.2: Shifts on page 25.

4.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between an ARM710 register and
memory.

The action of LDR(B) and STR(B) instructions is influenced by the 3 instruction fetches. For more
information see Section 4.17: Instruction Speed Summary on page 64. The two possible configurations are
described below.

Little Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte
is placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with
zeros. Please see Figure 4: Big Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address offset from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7.
This means that half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then required to clear or to sign extend the upper
16 bits. This is illustrated in Figure 20: Little Endian Offset Addressing.
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 Figure 20: Little Endian Offset Addressing

A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

Big Endian Configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled
with zeros.  Please see Figure 4: Big Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through 0. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or 2 from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these offsets will be correctly loaded into bits 16 through
31 of the register. A shift operation is then required to move (and optionally sign extend) the data into the
bottom 16 bits. An address offset of 1 or 3 from a word boundary will cause the data to be rotated into the
register so that the addressed byte occupies bits 15 through 8.
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A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

4.7.4 Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 shall not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address
of the instruction plus 12.

4.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn,
gets updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

For example:

LDR R0,[R1],R1

Therefore a post-indexed LDR|STR where Rm is the same register as Rn shall not be used.

4.7.6 Data Aborts

A transfer to or from a legal address may cause problems for a memory management system. For instance,
in a system which uses virtual memory the required data may be absent from main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Data Abort trap
will be taken. It is up to the system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

4.7.7 Instruction Cycle Times

Normal LDR instructions take 1 instruction fetch, 1 data read and 1 internal cycle and LDR PC take 3 in-
struction fetches, 1 data read and 1 internal cycle. For more information see Section 4.17: Instruction Speed
Summary on page 64.

STR instructions take 1 instruction fetch and 1 data write incremental cycles to execute.

4.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

LDR - load from memory into a register

STR - store from a register into memory
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{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

{T} - if T is present the W bit will be set in a post-indexed instruction, forcing non-privileged mode for the
transfer cycle. T is not allowed when a pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

(ii) A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of index register, shifted by <shift>

(iii) A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM710 pipelining. In this case base write-back shall not be specified.

<shift> is a general shift operation (see section on data processing instructions) but note that the shift
amount may not be specified by a register.

{!} writes back the base register (set the W bit) if ! is present.

4.7.9 Examples

STR R1,[R2,R4]! ; store R1 at R2+R4 (both of which are
; registers) and write back address to R2

STR R1,[R2],R4 ; store R1 at R2 and write back
; R2+R4 to R2

LDR R1,[R2,#16] ; load R1 from contents of R2+16
;  Don't write back

LDR R1,[R2,R3,LSL#2] ; load R1 from contents of R2+R3*4
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LDREQB R1,[R6,#5] ; conditionally load byte at R6+5 into
;  R1 bits 0 to 7, filling bits 8 to 31
;  with zeros

STR R1,PLACE ; generate PC relative offset to address
• ;  PLACE
•

PLACE
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4.8 Block Data Transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 21: Block Data Transfer Instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or
down memory, and are very efficient instructions for saving or restoring context, or for moving large blocks
of data around main memory.

4.8.1 The Register List

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs
can also transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction,
with each bit corresponding to a register. A 1 in bit 0 of the register field will cause R0 to be transferred, a
0 will cause it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

 Figure 21: Block Data Transfer Instructions

4.8.2 Addressing Modes

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the
up/down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest memory address. By
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PSR & force user bit
0 = do not load PSR or force user mode
1 = load PSR or force user mode

Condition field
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way of illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and write back of
the modified base is required (W=1). Figures 22, 23, 24 and 25 show the sequence of register transfers, the
addresses used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=0), Rn would have retained its initial
value of 0x1000 unless it was also in the transfer list of a load multiple register instruction, when it would
have been overwritten with the loaded value.

4.8.3 Address Alignment

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by
the memory system.

 Figure 22: Post-increment addressing
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 Figure 23: Pre-increment addressing

 Figure 24: Post-decrement addressing
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 Figure 25: Pre-decrement addressing

4.8.4 Use of the S bit
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4.8.5 Use of R15 as the base

R15 shall not be used as the base register in any LDM or STM instruction.

4.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle of the instruction.
During a STM, the first register is written out at the start of the second cycle. A STM which includes storing
the base, with the base as the first register to be stored, will therefore store the unchanged value, whereas
with the base second or later in the transfer order, will store the modified value. A LDM will always
overwrite the updated base if the base is in the list.

4.8.7 Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the memory manager
can indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any
transfer during a multiple register load or store, and must be recoverable if ARM710 is to be used in a
virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM710 takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the
modification of the base register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM710 detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

(i) Overwriting of registers stops when the abort happens. The aborting load will not take place but
earlier ones may have overwritten registers. The PC is always the last register to be written and so
will always be preserved.

(ii) The base register is restored, to its modified value if write-back was requested. This ensures
recoverability in the case where the base register is also in the transfer list, and may have been
overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any
base modification (and resolve the cause of the abort) before restarting the instruction.

4.8.8 Instruction Cycle Times

Normal LDM instructions take 1 instruction fetch, n data reads and 1 internal cycle and LDM PC takes 3
instruction fetches, n data reads and 1 internal cycle. For more information see Section 4.17: Instruction Speed
Summary on page 64.

STM instructions take 1 instruction fetch, n data reads and 1 internal cycle to execute.
n is the number of words transferred.
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4.8.9 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (eg {R0,R2-R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force transfer of user bank when in privileged
mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalences between the names and
the values of the bits in the instruction are shown in the following table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form of stack required.
The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index has to be done (full) before storing
to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go
up and LDM down, if descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment
After, Increment Before, Decrement After, Decrement Before.

name stack other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

Table 5: Addressing Mode Names
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4.8.10 Examples

LDMFD SP!,{R0,R1,R2} ; unstack 3 registers

STMIA R0,{R0-R15} ; save all registers

LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode (allowed

;  only in privileged modes)
STMFD R13,{R0-R14}^ ; Save user mode regs on stack (allowed

;  only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the
calling routine:

STMED SP!,{R0-R3,R14} ; save R0 to R3 to use as workspace
;  and R14 for returning

BL somewhere ; this nested call will overwrite R14

LDMED SP!,{R0-R3,R15} ; restore workspace and return
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4.9 Single data swap (SWP)

 Figure 26: Swap Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 26: Swap Instruction.

The data swap instruction is used to swap a byte or word quantity between a register and external memory.
This instruction is implemented as a memory read followed by a memory write which are “locked”
together (the processor cannot be interrupted until both operations have completed, and the memory
manager is warned to treat them as inseparable). This class of instruction is particularly useful for
implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the
contents of the swap address. Then it writes the contents of the source register (Rm) to the swap address,
and stores the old memory contents in the destination register (Rd). The same register may be specified as
both the source and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external
memory manager that they are locked together, and should be allowed to complete without interruption.
This is important in multi-processor systems where the swap instruction is the only indivisible instruction
which may be used to implement semaphores; control of the memory must not be removed from a
processor while it is performing a locked operation.

4.9.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an ARM710 register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

4.9.2 Use of R15

R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

0111215161920272831 23 78 4 3

Condition field

Cond Rn Rd 10010000 Rm00B00010

22 21

Destination register
Source register

Base register
Byte/Word bit

0 = swap word quantity
1 = swap byte quantity
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4.9.3 Data Aborts

If the address used for the swap is unacceptable to a memory management system, the memory manager
can flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or
both), and in either case, the Data Abort trap will be taken. It is up to the system software to resolve the
cause of the problem, then the instruction can be restarted and the original program continued.

4.9.4 Instruction Cycle Times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle. For more
information see Section 4.17: Instruction Speed Summary on page 64.

4.9.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

4.9.6 Examples

SWP R0,R1,[R2] ; load R0 with the word addressed by R2, and
; store R1 at R2

SWPB R2,R3,[R4] ; load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4

SWPEQ R0,R0,[R1] ; conditionally swap the contents of the
; word addressed by R1 with R0
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4.10 Software interrupt (SWI)

 Figure 27: Software Interrupt Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 27: Software Interrupt Instruction.

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a
fixed value (0x08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by
external memory management hardware) from modification by the user, a fully protected operating system
may be constructed.

4.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the
word after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts
within itself it must first save a copy of the return address and SPSR.

4.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate
information to the supervisor code. For instance, the supervisor may look at this field and use it to index
into an array of entry points for routines which perform the various supervisor functions.

4.10.3 Instruction Cycle Times

Software interrupt instructions take 3 instruction fetches. For more information see Section 4.17: Instruction
Speed Summary on page 64.

4.10.4 Assembler syntax

SWI{cond} <expression>

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

<expression> is evaluated and placed in the comment field (which is ignored by ARM710).

31 28 27 24 23 0

Condition field

1111Cond Comment field (ignored by Processor)
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4.10.5 Examples

SWI ReadC ; get next character from read stream
SWI WriteI+”k” ; output a “k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point

EntryTable ; addresses of supervisor routines
DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

          . . .

Zero EQU  0
ReadC EQU  256
WriteI EQU  512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; save work registers and return address
LDR R0,[R14,#-4] ; get SWI instruction
BIC R0,R0,#0xFF000000 ; clear top 8 bits
MOV R1,R0,LSR#8 ; get routine offset
ADR R2,EntryTable ; get start address of entry table
LDR R15,[R2,R1,LSL#2] ; branch to appropriate routine

WriteIRtn ; enter with character in R0 bits 0-7
.  .  .  .  .  .

LDMFD R13,{R0-R2,R15}^ ; restore workspace and return
; restoring processor mode and flags
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4.11 Coprocessor Instructions on ARM710

The ARM710, unlike some other ARM processors, does not have an external coprocessor interface. The
ARM710 only supports a single on chip coprocessor, #15, which is used to program the on-chip control reg-
isters. This only supports the Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the ARM710 to take the undefined instruction trap. These
coprocessor instructions can be emulated in software by the undefined trap handler. Even though external
coprocessors cannot be connected to ARM710, the coprocessor instructions are still described here in full
for completeness. Any external coprocessor referred to will be a software emulation.

4.12 Coprocessor data operations (CDP)

Use of the CDP instruction on the ARM710 will cause an undefined instruction trap to be taken, which may
be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 28: Coprocessor Data Operation Instruction.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to the ARM710, and it will not wait for the operation to complete. The coprocessor
could contain a queue of such instructions awaiting execution, and their execution can overlap other
activity, allowing the coprocessor and the ARM710 to perform independent tasks in parallel.

 Figure 28: Coprocessor Data Operation Instruction

4.12.1 The Coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are used by coprocessors.
The above field names are used by convention, and particular coprocessors may redefine the use of all fields
except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for
each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the
CP# field.

Cond

011121516192024272831 23

CRd CP#
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1110 CP Opc CRn CP 0 CRm
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Coprocessor number 

Condition field

Coprocessor information 
Coprocessor operand register 

Coprocessor destination register 
Coprocessor operand register 
Coprocessor operation code 
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The conventional interpretation of the instruction is that the coprocessor should perform an operation
specified in the CP Opc field (and possibly in the CP field) on the contents of CRn and CRm, and place the
result in CRd.

4.12.2 Instruction Cycle Times

All CDP instructions are emulated in software: the number of cycles taken will depend on the coprocessor
support software.

4.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

4.12.4 Examples

CDP p1,10,c1,c2,c3 ; request coproc 1 to do operation 10
; on CR2 and CR3, and put the result in CR1

CDPEQ p2,5,c1,c2,c3,2 ; if Z flag is set request coproc 2 to do
; operation 5 (type 2) on CR2 and CR3,
; and put the result in CR1
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4.13 Coprocessor data transfers (LDC, STC)

Use of the LDC or STC instruction on the ARM710 will cause an undefined instruction trap to be taken,
which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 29: Coprocessor Data Transfer Instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors’s registers directly
to memory. The processor is responsible for supplying the memory address, and the coprocessor supplies
or accepts the data and controls the number of words transferred.

 Figure 29: Coprocessor Data Transfer Instructions

4.13.1 The Coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a
coprocessor will only respond if its number matches the contents of this field.

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different
ways by different coprocessors, but by convention CRd is the register to be transferred (or the first register
where more than one is to be transferred), and the N bit is used to choose one of two transfer length options.
For instance N=0 could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

Cond Rn
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Coprocessor number 
Unsigned 8 bit immediate offset

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = no write-back
1 = write address into base

Coprocessor source/destination register 

Pre/Post indexing bit

Up/Down bit
0 = down; subtract offset from base
1 = up; add offset to base

0 = post; add offset after transfer

Transfer length

Condition field
1 = pre; add offset before transfer
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4.13.2 Addressing modes

The processor is responsible for providing the address used by the memory system for the transfer, and the
addressing modes available are a subset of those used in single data transfer instructions. Note, however,
that for coprocessor data transfers the immediate offsets are 8 bits wide and specify word offsets, whereas
for single data transfers they are 12 bits wide and specify byte offsets.

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=0)
the base register (Rn); this calculation may be performed either before (P=1) or after (P=0) the base is used
as the transfer address. The modified base value may be overwritten back into the base register (if W=1), or
the old value of the base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for
the transfer of the first word. The second word (if more than one is transferred) will go to or come from an
address one word (4 bytes) higher than the first transfer, and the address will be incremented by one word
for each subsequent transfer.

4.13.3 Address Alignment

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear
on A[1:0] and might be interpreted by the memory system.

4.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base write-back to R15 shall
not be specified.

4.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write-
back of the modified base will take place, but all other processor state will be preserved. The coprocessor is
partly responsible for ensuring that the data transfer can be restarted after the cause of the abort has been
resolved, and must ensure that any subsequent actions it undertakes can be repeated when the instruction
is retried.

4.13.6 Instruction Cycle Times

All LDC instructions are emulated in software: the number of cycles taken will depend on the coprocessor
support software.

4.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC - load from memory to coprocessor

STC - store from coprocessor to memory
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{L} - when present perform long transfer (N=1), otherwise perform short transfer (N=0)

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number that is placed in the CRd field

<Address> can be:

(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

(ii) A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

(iii) A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

Rn is an expression evaluating to a valid processor register number. Note, if Rn is R15 then the assembler
will subtract 8 from the offset value to allow for processor pipelining.

{!} write back the base register (set the W bit) if ! is present

4.13.8 Examples

LDC p1,c2,table ; load c2 of coproc 1 from address table,
; using a PC relative address.

STCEQL p2,c3,[R5,#24]! ; conditionally store c3 of coproc 2 into
; an address 24 bytes up from R5, write this
; address back to R5, and use long transfer
; option (probably to store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is in words. The
assembler will adjust the offset appropriately.
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4.14 Coprocessor register transfers (MRC, MCR)

Use of the MRC or MCR instruction on the ARM710 to a coprocessor other than number 15 will cause an
undefined instruction trap to be taken, which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 30: Coprocessor Register Transfer Instructions.

This class of instruction is used to communicate information directly between ARM710 and a coprocessor.
An example of a coprocessor to processor register transfer (MRC) instruction would be a FIX of a floating
point value held in a coprocessor, where the floating point number is converted into a 32 bit integer within
the coprocessor, and the result is then transferred to a processor register. A FLOAT of a 32 bit value in a
processor register into a floating point value within the coprocessor illustrates the use of a processor register
to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from the coprocessor
into the processor CPSR flags. As an example, the result of a comparison of two floating point values within
a coprocessor can be moved to the CPSR to control the subsequent flow of execution.

Note the ARM710 has an internal coprocessor (#15) for control of on-chip functions. Accesses to this
coprocessor are performed by coprocessor register transfers.

 Figure 30: Coprocessor Register Transfer Instructions

4.14.1 The Coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon.
The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented
here is derived from convention only. Other interpretations are allowed where the coprocessor
functionality is incompatible with this one. The conventional interpretation is that the CP Opc and CP fields
specify the operation the coprocessor is required to perform, CRn is the coprocessor register which is the
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source or destination of the transferred information, and CRm is a second coprocessor register which may
be involved in some way which depends on the particular operation specified.

4.14.2 Transfers to R15

When a coprocessor register transfer to ARM710 has R15 as the destination, bits 31, 30, 29 and 28 of the
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word
are ignored, and the PC and other CPSR bits are unaffected by the transfer.

4.14.3 Transfers from R15

A coprocessor register transfer from ARM710 with R15 as the source register will store the PC+12.

4.14.4 Instruction Cycle Times

Access to the internal configuration register takes 3 internal cycles. All other MRC instructions default to
software emulation, and the number of cycles taken will depend on the coprocessor support software.

4.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC - move from coprocessor to ARM710 register (L=1)

MCR - move from ARM710 register to coprocessor (L=0)

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

 <expression1> - evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM710 register number

cn and cm are expressions evaluating to the valid coprocessor register numbers CRn and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

4.14.6 Examples

MRC 2,5,R3,c5,c6 ; request coproc 2 to perform operation 5
;  on c5 and c6, and transfer the (single
;  32 bit word) result back to R3

MCR 6,0,R4,c6 ; request coproc 6 to perform operation 0
;  on R4 and place the result in c6

MRCEQ 3,9,R3,c5,c6,2 ; conditionally request coproc 3 to perform
;  operation 9 (type 2) on c5 and c6, and
;  transfer the result back to R3
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4.15 Undefined instruction

 Figure 31: Undefined Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction format is shown in Figure 31: Undefined Instruction.

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which
may be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH.

4.15.1 Assembler syntax

At present the assembler has no mnemonics for generating this instruction. If it is adopted in the future for
some specified use, suitable mnemonics will be added to the assembler. Until such time, this instruction
shall not be used.

Cond
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1011 xxxx

25

xxxxxxxxxxxxxxxxxxxx
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4.16 Instruction Set Examples

The following examples show ways in which the basic ARM710 instructions can combine to give efficient
code. None of these methods saves a great deal of execution time (although they may save some), mostly
they just save code.

4.16.1 Using the conditional instructions

(1) using conditionals for logical OR

CMP Rn,#p ; if Rn=p OR Rm=q THEN GOTO Label
BEQ Label
CMP Rm,#q
BEQ Label

can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; if condition not satisfied try other test
BEQ Label

(2) absolute value

TEQ Rn,#0 ; test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary

(3) multiplication by 4, 5 or 6 (run time)

MOV Rc,Ra,LSL#2 ; multiply by 4
CMP Rb,#5 ; test value
ADDCS Rc,Rc,Ra ; complete multiply by 5
ADDHI Rc,Rc,Ra ; complete multiply by 6

(4) combining discrete and range tests

TEQ Rc,#127 ; discrete test
CMPNE Rc,#” “-1 ; range test
MOVLS Rc,#”.” ; IF   Rc<=” “ OR Rc=ASCII(127)

; THEN Rc:=”.”

(5) division and remainder

A number of divide routines for specific applications are provided in source form as part of the ANSI C
library provided with the ARM Cross Development Toolkit, available from your supplier. A short general
pupose divide routine follows.
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; enter with numbers in Ra and Rb
;

MOV Rcnt,#1 ; bit to control the division
Div1 CMP Rb,#0x80000000 ; move Rb until greater than Ra

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Div2 CMP Ra,Rb ; test for possible subtraction
SUBCS Ra,Ra,Rb ; subtract if ok
ADDCS Rc,Rc,Rcnt ; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless finished
BNE Div2

;
; divide result in Rc
; remainder in Ra

4.16.2 Pseudo random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on
shift generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately
the sequence of a 32 bit generator needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is
performed for all the newbits needed (i.e. 32 bits). The entire operation can be done in 5 S cycles:

; enter with seed in Ra (32 bits),
  Rb (1 bit in Rb lsb), uses Rc
;

TST Rb,Rb,LSR#1 ; top bit into carry
MOVS Rc,Ra,RRX ; 33 bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

;
; new seed in Ra, Rb as before

4.16.3 Multiplication by constant using the barrel shifter

(1) Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

(2) Multiplication by 2^n+1 (3,5,9,17..)

ADD Ra,Ra,Ra,LSL #n
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(3) Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

(4) Multiplication by 6

ADD Ra,Ra,Ra,LSL #1 ; multiply by 3
MOV Ra,Ra,LSL#1 ; and then by 2

(5) Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2 ; multiply by 5
ADD Ra,Rc,Ra,LSL#1 ; multiply by 2 and add in next digit

(6) General recursive method for Rb := Ra*C, C a constant:

     (a) If C even, say C = 2^n*D, D odd:

D=1: MOV   Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

     (b) If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

     (c) If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB   Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2 ; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45
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4.16.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb ; combine two halves to get result

4.16.5 Loading a halfword (Little Endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 15:0
MOV Ra,Ra,LSL #16 ; move to top
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

4.16.6 Loading a halfword (Big Endian)

LDR Ra, [Rb,#2] ; Get halfword to bits 31:16
MOV Ra,Ra,LSR #16 ; and back to bottom

; use ASR to get sign extended version

4.17 Instruction Speed Summary

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical cycle one
instruction may be using the data path while the next is being decoded and the one after that is being
fetched. For this reason the following table presents the incremental number of cycles required by an
instruction, rather than the total number of cycles for which the instruction uses part of the processor.
Elapsed time (in cycles) for a routine may be calculated from these figures which are shown in Table 6: ARM
Instruction Speed Summary. These figures assume that the instruction is actually executed. Unexecuted
instructions take one instruction fetch cycle.
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Where:

n is the number of words transferred.

m is the number of cycles required by the multiply algorithm, which is determined by the contents of
Rs. Multiplication by any number between 2^(2m-3) and 2^(2m-1)-1 takes 1S+mI cycles for 1<m>16.
Multiplication by 0 or 1 takes 1S+1I cycles, and multiplication by any number greater than or equal
to 2^(29) takes 1S+16I cycles. The maximum time for any multiply is thus 1S+16I cycles.

The time taken for:

• an internal cycle - will always be one FCLK cycle

• an instruction fetch and data read - will be FCLK if a cache hit occurs, otherwise a full memory
access is performed.

• a data write - will be FCLK if the write buffer (if enabled) has available space, otherwise the write
will be delayed until the write buffer has free space. If the write buffer is not enabled a full memory
access is always performed.

• Co-processor cycles - all coprocessor operations except MCR or MRC to registers 0 to 7 on
coprocessor #15 (used for internal control) will cause the undefined instruction trap to be taken.

• memory accesses - can be found in the Bus Interface section.

Instruction Cycle count

Data Processing - normal
with register specified shift
with PC written
with register specified shift & PC written

1 instruction fetch
1 instruction fetch and 1 internal cycle
3 instruction fetches
3 instruction fetches and 1 internal cycle

MSR, MRS 1 instruction fetch
LDR - normal
    if the destination is the PC

1 instruction fetch, 1 data read and 1 internal cycle
3 instruction fetches, 1 data read and 1 internal cycle

STR 1 instruction fetch and 1 data write
LDM - normal
    if the destination is the PC

1 instruction fetch, n data reads and 1 internal cycle
3 instruction fetches, n data reads and 1 internal cycle

STM 1 instruction fetch and n data writes
SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle
B,BL 3 instruction fetches
SWI, trap 3 instruction fetches
MUL,MLA 1 instruction fetch and m internal cycles
CDP the undefined instruction trap will be taken
LDC the undefined instruction trap will be taken
STC the undefined instruction trap will be taken
MCR 1 instruction fetch and 3 internal cycles for coproc 15
MRC 1 instruction fetch and 3 internal cycles for coproc 15

Table 6: ARM Instruction Speed Summary
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5.0 Configuration

The operation and configuration of ARM710 is controlled both directly via coprocessor instructions and
indirectly via the Memory Management Page tables. The coprocessor instructions manipulate a number of
on-chip registers which control the configuration of the Cache, write buffer, MMU and a number of other
configuration options.

Note: The grey areas in the register and translation diagrams are reserved and , where values are shown,  must  be
programmed to the values specified.

5.1 Internal Coprocessor Instructions

The on-chip registers may be read from and written to using a special case of the coprocessor register
transfer instructions MRC and  MCR, where the target coprocessor is #15. Please note that attempting to
use MRC or MCR with a coprocessor other than #15 will cause ARM710 to take the undefined instruction
trap. Note also that MRC and MCR can only be used in privileged (non-User) modes: see Section 4.14:
Coprocessor register transfers (MRC, MCR) on page 58 for a general description of the MRC and MCR
instructions.

The figure below shows the format of the instructions when they are used to configure the ARM710:

 Figure 32: Format of MRC and MCR instructions  for Cache and MMU control

1 1 1 0 L 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd

Load/store flag
0 = register load (MRC)
1 = register store (MCR)

ARM condition codes

Cache/MMU control register

ARM register
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5.2 Registers

ARM710 contains a number of registers that control the operation of the cache and MMU. These are listed
in the table below:

Attempts to read or write registers in the range 0-7 whose respective access type is reserved will fail, but
will not cause the undefined instruction trap to be taken. For this reason such attempts must not be made.
Attempts to access registers in the range 8-15 will result in the undefined instruction trap being taken.

5.2.1  Register 0: ID Register

Register 0 is a read-only identity register that returns the ARM Ltd code for this chip: 0x4100710x.

Register Register Reads Register Writes

0 ID Register Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

Table 7: Cache and MMU control registers

00

0341516232431

41 Revision710
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5.2.2 Register 1: Control Register.

Register 1 is write-only and contains control bits, all of which are forced LOW by reset. The control bits have
the following functions:

No Name Function

0 M Enable/disable
0 -   on-chip Memory Management Unit turned off
1 -   on-chip Memory Management Unit turned on.

1 A Address Fault Enable/Disable
0 -   alignment fault disabled
1 -   alignment fault enabled

2 C Cache Enable/Disable
0 - Instruction / data cache turned off
1 - Instruction / data cache turned on

3 W Write buffer Enable/Disable
0 - Write buffer turned off
1 - Write buffer turned on

4 P ARM 32/26 Bit Program Space
0 - 26 bit Program Space selected
1 - 32 bit Program Space selected

5 D ARM 32/26 Bit Data Space
0 - 26 bit Data Space selected
1 - 32 bit Data Space selected

7 B Big/Little Endian
0 - Little-endian operation
1 - Big-endian operation

8 S System
ARM710 permission system control.
See Section 9.6:  Section Descriptor on page 83.

9 R ROM
ARM710 permission system control.
See Section 9.6:  Section Descriptor on page 83.

Table 8: Control Register Bits

012345678931

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R S B 1 D P W AC M

10
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5.2.3 Register 2: Translation Table Base Register

Register 2 is a write-only register which holds the base of the currently active Level One page table.

5.2.4 Register 3: Domain Access Control Register

Register 3 is a write-only register which holds the current access control for domains 0 to 15, as shown
below:.

See Section 9.13: Domain Access Control on page 90 for details.

5.2.5 Register 4: Reserved

Register 4 is reserved: accessing it has no effect, but should never be attempted.

5.2.6 Register 5: Fault Status and TLB Flush Register

Read: Fault Status
Reading register 5 returns the status of the last data fault. It is not updated for a prefetch fault. See  Chapter
9.0:  Memory Management Unit (MMU) for more details. Note that only the bottom 12 bits are returned. The
upper 20 bits will be the last value on the internal data bus, and therefore will have no meaning. Bits 11:8
are always returned as zero.

Write: Translation Lookaside Buffer Flush
Writing Register 5 flushes the TLB. (The data written is discarded).

5.2.7 Register 6: Fault Address and TLB Purge Register

Read: Fault Address
Reading register 6 returns the virtual address of the last data fault.

0131431

Translation Table Base

012345678910111213141516171819202122232425262728293031

0123456789101112131415

0 0 0 0 Domain Status

03478111231

031

Fault Address
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Write: TLB Purge
Writing Register 6 purges the TLB; the data is treated as an address and the TLB is searched for a
corresponding page table descriptor. If a match is found, the corresponding entry is marked as invalid. This
allows the page table descriptors in main memory to be updated and invalid entries in the on-chip TLB to
be purged without requiring the entire TLB to be flushed.

5.2.8 Register 7: IDC Flush Register

Register 7 is a write-only register. The data written to this register is discarded and the IDC is flushed.

5.2.9 Registers 8 -15: Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.

031

Purge Address

1314
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6.0 Instruction and Data Cache (IDC)

ARM710 contains a 8kByte mixed instruction and data cache. The IDC has 256 lines of 32 bytes (8 words),
arranged as a 4 way set associative cache, and uses the virtual addresses generated by the processor core.
The IDC is always reloaded a line at a time (8 words). It may be enabled or disabled via the ARM710 Control
Register and is disabled on nRESET. The operation of the cache is further controlled the Cacheable, or C, bit
stored in the Memory Management Page Table (see Chapter 9.0:  Memory Management Unit (MMU).). For this
reason, in order to use the IDC, the MMU must be enabled. The two functions may however be enabled
simultaneously, with a single write to the Control Register.

6.1 Cacheable Bit

The Cacheable bit determines whether data being read may be placed in the IDC and used for subsequent
read operations. Typically main memory will be marked as Cacheable to improve system performance, and
I/O space as Non-cacheable to stop the data being stored in ARM710's cache. For example if the processor
is polling a hardware flag in I/O space, it is important that the processor is forced to read data from the
external peripheral, and not a copy of initial data held in the cache. The Cacheable bit can be configured for
both pages and sections.

6.2 IDC Operation

In the ARM710 the cache will be searched regardless of the state of the C bit, only reads that miss the cache
will be affected.

6.2.1 Cacheable Reads      C = 1

A linefetch of 8 words will be performed and it will be randomly placed in a cache bank.

6.2.2 Uncacheable Reads     C = 0

An external memory access will be performed and the cache will not be written.

6.3 IDC validity

The IDC operates with virtual addresses, so care must be taken to ensure that its contents remain consistent
with the virtual to physical mappings performed by the Memory Management Unit. If the Memory
Mappings are changed, the IDC validity must be ensured.

6.3.1 Software IDC Flush

The entire IDC may be marked as invalid by writing to the ARM710 IDC Flush Register (Register 7). The
cache will be flushed immediately after the register is written, but note that the following two instruction
fetches may come from the cache before the register is written.
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6.3.2 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address maps to a different
physical address. If the same physical location is accessed by more than one virtual address, the cache
cannot maintain consistency, since each virtual address will have a separate entry in the cache, and only
one entry will be updated on a processor write operation. To avoid any cache inconsistencies, both doubly-
mapped virtual addresses should be marked as uncacheable.

6.4 Read-Lock-Write

The IDC treats the Read-Locked-Write instruction as a special case. The read phase always forces a read of
external memory, regardless of whether the data is contained in the cache. The write phase is treated as a
normal write operation (and if the data is already in the cache, the cache will be updated). Externally the
two phases are flagged as indivisible by asserting the LOCK signal.

6.5 IDC Enable/Disable and Reset

The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable read accesses will
cause lines to be placed in the cache.

6.5.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control Register, then enable
the IDC by setting bit 2 in Control Register. The MMU and IDC may be enabled simultaneously with a
single control register write.

6.5.2 To disable the IDC

To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to the flush register.
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7.0 Write Buffer (WB)

The ARM710 write buffer is provided to improve system performance. It can buffer up to 8 words of data,
and 4 independent addresses. It may be enabled or disabled via the W bit (bit 3) in the ARM710 Control
Register and the buffer is disabled and flushed on reset. The operation of the write buffer is further
controlled by one bit, B, or Bufferable, which is stored in the Memory Management Page Tables. For this
reason, in order to use the write buffer, the MMU must be enabled. The two functions may however be
enabled simultaneously, with a single write to the Control Register. For a write to use the write buffer, both
the W bit in the Control Register, and the B bit in the corresponding page table must be set. It is not possible
to abort buffered writes externally; the abort pin will be ignored.

7.1 Bufferable bit

This bit controls whether a write operation may or may not use the write buffer. Typically main memory
will be bufferable and I/O space unbufferable. The Bufferable bit can be configured for both pages and
sections.

7.2 Write Buffer Operation

When the CPU performs a write operation, the translation entry for that address is inspected and the state
of the B bit determines the subsequent action. If the write buffer is disabled via the ARM710 Control
Register, bufferable writes are treated in the same way as unbuffered writes.

7.2.1 Bufferable Write

If the write buffer is enabled and the processor performs a write to a bufferable area, the data is placed in
the write buffer at FCLK speeds and the CPU continues execution. The write buffer then performs the
external write in parallel. If however the write buffer is full (either because there are already 8 words of data
in the buffer, or because there is no slot for the new address) then the processor is stalled until there is
sufficient space in the buffer.

7.2.2 Unbufferable Writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the processor is stalled
until the write buffer empties and the write completes externally, which may require synchronisation and
several external clock cycles.

7.2.3 Read-Lock-Write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even if it is marked as
buffered.

Note: A single write requires one address slot and one data slot in the write buffer; a sequential write of
n words requires one address slot and n data slots. The total of 8 data slots in the buffer may be
used as required. So for instance there could be 3 non-sequential writes and one sequential write of
5 words in the buffer, and the processor could continue as normal: a 5th write or a  6th word in the
4th write would stall the processor until the first write had completed.
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7.2.4 To enable the Write Buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control Register, then enable
the write buffer by setting bit 3 in the Control Register. The MMU and write buffer may be enabled
simultaneously with a single write to the Control Register.

7.2.5 To disable the Write Buffer

To disable the write buffer, clear bit 3 in the Control Register.

Note: Any writes already in the write buffer will complete normally.
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8.0 Coprocessors

ARM710 has no external coprocessor bus, so it is not possible to add external coprocessors to this device. If
this is required, then the ARM700 should be used.

ARM710 still has an internal coprocessor designated #15 for internal control of the device. All coprocessor
operations except MCR or MRC to registers 0 to 7 on coprocessor #15 will cause the undefined instruction
trap to be taken.
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9.0 Memory Management Unit (MMU)

The MMU performs two primary functions: it translates virtual addresses into physical addresses, and it
controls memory access permissions. The MMU hardware required to perform these functions consists of
a Translation Look-aside Buffer (TLB), access control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are comprised of 1MB blocks of
memory. Two different page sizes are supported: Small Pages consist of 4kB blocks of memory and Large
Pages consist of 64kB blocks of memory. (Large Pages are supported to allow mapping of a large region of
memory while using only a single entry in the TLB). Additional access control mechanisms are extended
within Small Pages to 1kB Sub-Pages and within Large Pages to 16kB Sub-Pages.

The MMU also supports the concept of domains - areas of memory that can be defined to possess individual
access rights. The Domain Access Control Register is used to specify access rights for up to 16 separate
domains.

The TLB caches 64 translated entries. During most memory accesses, the TLB provides the translation
information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic determines whether
access is permitted. If access is permitted, the MMU outputs the appropriate physical address
corresponding to the virtual address. If access is not permitted, the MMU signals the CPU to abort.

If the TLB misses (it does not contain a translated entry for the virtual address), the translation table walk
hardware is invoked to retrieve the translation information from a translation table in physical memory.
Once retrieved, the translation information is placed into the TLB, possibly overwriting an existing value.
The entry to be overwritten is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output directly onto the physical
address bus.

9.1 MMU Program Accessible Registers

The ARM710 Processor provides several 32-bit registers which determine the operation of the MMU. The
format for these registers is shown in Figure 33: MMU Register Summary. A brief description of the registers
is provided below. Each register will be discussed in more detail within the section that describes its use.

Data is written to and read from the MMU's registers using the ARM CPU's MRC and MCR coprocessor
instructions.

The Translation Table Base Register holds the physical address of the base of the translation table
maintained in main memory. Note that this base must reside on a 16kB boundary.

The Domain Access Control Register consists of sixteen 2-bit fields, each of which defines the
access permissions for one of the sixteen Domains (D15-D0).
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 Figure 33: MMU Register Summary

Note: The registers not shown are reserved and should not be used.

The Fault Status Register indicates the domain and type of access being attempted when an abort
occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was being accessed when a fault
occurred. Bits 3:1 indicate the type of access being attempted. The encoding of these bits is different
for internal and external faults (as indicated by bit 0 in the register) and is shown in Table 12: Priority
Encoding of Fault Status. A write to this register flushes the TLB.

The Fault Address Register holds the virtual address of the access which was attempted when a
fault occurred. A write to this register causes the data written to be treated as an address and, if it
is found in the TLB, the entry is marked as invalid. (This operation is known as a TLB purge). The
Fault Status Register and Fault Address Register are only updated for data faults, not for prefetch
faults.

9.2 Address Translation

The MMU translates virtual addresses generated by the CPU into physical addresses to access external
memory, and also derives and checks the access permission. Translation information, which consists of
both the address translation data and the access permission data, resides in a translation table located in
physical memory. The MMU provides the logic needed to traverse this translation table, obtain the
translated address, and check the access permission.

There are three routes by which the address translation (and hence permission check) takes place. The route
taken depends on whether the address in question has been marked as a section-mapped access or a page-
mapped access; and there are two sizes of page-mapped access (large pages and small pages). However,
the translation process always starts out in the same way, as described below, with a Level One fetch. A
section-mapped access only requires a Level One fetch, but a page-mapped access also requires a Level Two
fetch.

Domain Access Control

0 Control L D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S BControl0 0 0 0 F R BS 10
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9.3 Translation Process

9.3.1 Translation Table Base

The translation process is initiated when the on-chip TLB does not contain an entry for the requested virtual
address. The Translation Table Base (TTB) Register points to the base of a table in physical memory which
contains Section and/or Page descriptors. The 14 low-order bits of the TTB Register are set to zero as
illustrated in Figure 34: Translation Table Base Register; the table must reside on a 16kB boundary.

 Figure 34: Translation Table Base Register

9.3.2 Level One Fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of the virtual address to
produce a 30-bit address as illustrated in Figure 35: Accessing the Translation Table First Level Descriptors. This
address selects a four-byte translation table entry which is a First Level Descriptor for either a Section or a
Page (bit1 of the descriptor returned specifies whether it is for a Section or Page).

 Figure 35: Accessing the Translation Table First Level Descriptors

0131431

Translation Table Base

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031
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9.4 Level One Descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section Descriptor, and its format
varies accordingly. The following figure illustrates the format of Level One Descriptors.

 Figure 36: Level One Descriptors

The two least significant bits indicate the descriptor type and validity, and are interpreted as shown below.

9.5 Page Table Descriptor

Bits 3:2 are always written as 0.

Bit 4 should be written to 1 for backward compatibility.
Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Control Register) that
contain the primary access controls.

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index for the entry is derived
from the virtual address as illustrated in Figure 39: Small Page Translation).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is initiated as described
below.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

Table 9: Interpreting Level One Descriptor Bits [1:0]

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address U

U1

1
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9.6 Section Descriptor

Bits 3:2 (C, & B) control the cache- and write-buffer-related functions as follows:

C - Cacheable: indicates that data at this address will be placed in the cache (if the cache is enabled).

B - Bufferable: indicates that data at this address will be written through the write buffer (if the write buffer
is enabled).

Bit 4 should be written to 1 for backward compatibility.

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Control Register) that
contain the primary access controls.

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as shown in Table 10:
Interpreting Access Permission (AP) Bits. Their interpretation is dependent upon the setting of the S and R bits
(control register bits 8 and 9). Note that the Domain Access Control specifies the primary access control; the
AP bits only have an effect in client mode. Refer to section on access permissions.

Bits 19:12 are always written as 0.

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section.

AP S R
             Permissions
Supervisor             User

Notes

00 0 0 No Access No Access Any access generates a permission fault

00 1 0 Read Only No Access Supervisor read only permitted

00 0 1 Read Only Read Only Any write generates a permission fault

00 1 1 Reserved

01 x x Read/Write No Access Access allowed only in Supervisor mode

10 x x Read/Write Read Only Writes in User mode cause permission fault

11 x x Read/Write Read/Write All access types permitted in both modes.

xx 1 1 Reserved

Table 10:  Interpreting Access Permission (AP) Bits
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9.7 Translating Section References

Figure 37: Section Translation illustrates the complete Section translation sequence. Note that the access
permissions contained in the Level One Descriptor must be checked before the physical address is
generated. The sequence for checking access permissions is described below.

 Figure 37: Section Translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

U
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9.8 Level Two Descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address of the page table to
be used. The page table is then accessed as described in Figure 39: Small Page Translation, and a Page Table
Entry, or Level Two Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors.

 Figure 38: Page Table Entry (Level Two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as follows.

Bit 2 B - Bufferable: indicates that data at this address will be written through the write buffer (if the write
buffer is enabled).

Bit 3 C - Cacheable: indicates that data at this address will be placed in the IDC (if the cache is enabled).

Bits 11:4 specify the access permissions (ap3 - ap0) for the four sub-pages and interpretation of these bits is
described earlier in Table 9: Interpreting Level One Descriptor Bits [1:0].

For large pages, bits 15:12 are programmed as 0.

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the corresponding bits of the physical
address - the physical page number. (The page index is derived from the virtual address as illustrated in
Figure 39: Small Page Translation and Figure 40: Large Page Translation).

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64 kB Page

 1 0 Small Page Indicates that this is a 4 kB Page

 1 1 Reserved Reserved for future use

Table 11: Interpreting Page Table Entry Bits 1:0

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B



ARM710 Data Sheet

86

9.9 Translating Small Page References

Figure 39: Small Page Translation illustrates the complete translation sequence for a 4kB Small Page. Page
translation involves one additional step beyond that of a section translation: the Level One descriptor is the
Page Table descriptor, and this is used to point to the Level Two descriptor, or Page Table Entry. (Note that
the access permissions are now contained in the Level Two descriptor and must be checked before the
physical address is generated. The sequence for checking access permissions is described later).

 Figure 39: Small Page Translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

U
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9.10 Translating Large Page References

Figure 40: Large Page Translation illustrates the complete translation sequence for a 64 kB Large Page. Note
that since the upper four bits of the Page Index and low-order four bits of the Page Table index overlap,
each Page Table Entry for a Large Page must be duplicated 16 times (in consecutive memory locations) in
the Page Table.

 Figure 40: Large Page Translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

U
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9.11 MMU Faults and CPU Aborts

The MMU generates four types of faults:

Alignment Fault
Translation Fault
Domain Fault
Permission Fault

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these faults. If a fault is
detected as the result of a memory access, the MMU will abort the access and signal the fault condition to
the CPU. The MMU is also capable of retaining status and address information about the abort. The CPU
recognises two types of abort: data aborts and prefetch aborts, and these are treated differently by the
MMU.

If the MMU detects an access violation, it will do so before the external memory access takes place, and it
will therefore inhibit the access. External aborts will not necessarily inhibit the external access, as described
in the section on external aborts.

9.12 Fault Address & Fault Status Registers (FAR & FSR)

Aborts resulting from data accesses (data aborts) are acted upon by the CPU immediately, and the MMU
places an encoded 4 bit value FS[3:0], along with the 4 bit encoded Domain number, in the Fault Status
Register (FSR). In addition, the virtual processor address which caused the data abort is latched into the
Fault Address Register (FAR). If an access violation simultaneously generates more than one source of
abort, they are encoded in the priority given in Table 12: Priority Encoding of Fault Status.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags the instruction as it
enters the instruction pipeline. Only when (and if) the instruction is executed does it cause an abort; an
abort is not acted upon if the instruction is not used (i.e. it is branched around). Because instruction prefetch
aborts may or may not be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls supported by the MMU and
detail how these are interpreted to generate faults.
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x is undefined, and may read as 0 or 1

Notes:

(1) Any abort masked by the priority encoding may be regenerated by fixing the primary abort and
restarting the instruction.

(2) In fact this register will contain bits[8:5] of the Level 1 entry which are undefined, but would encode
the domain in a valid entry.

Source FS[3210] Domain[3:0]  FAR

Highest Bus Error (linefetch)              Section 0100 valid valid

                                                       Page  0110 valid valid

 Bus Error (other)                   Section 1000 valid valid

                                                      Page  1010 valid valid

Alignment 00x1 x valid

Bus Error (translation)             level1 1100 x valid

                                                      level2 1110 valid valid

Translation                             Section 0101 Note 2 valid

                                                        Page 0111 valid valid

Domain                                     Section 1001 valid valid

                                                         Page 1011 valid valid

Permission                              Section 1101 valid valid

Lowest                                                          Page  1111 valid valid

Table 12: Priority Encoding of Fault Status
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9.13 Domain Access Control

MMU accesses are primarily controlled via domains. There are 16 domains, and each has a 2-bit field to
define it. Two basic kinds of users are supported: Clients and Managers. Clients use a domain; Managers
control the behaviour of the domain. The domains are defined in the Domain Access Control Register.
Figure 41: Domain Access Control Register Format illustrates how the 32 bits of the register are allocated to
define the sixteen 2-bit domains.

 Figure 41: Domain Access Control Register Format

Table 13: Interpreting Access Bits in Domain Access Control Register defines how the bits within each domain
are interpreted to specify the access permissions.

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in the Section or Page
descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are NOT checked against the access Permission bits so a Permission
fault cannot be generated.

Table 13: Interpreting Access Bits in Domain Access Control Register

012345678910111213141516171819202122232425262728293031

0123456789101112131415
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9.14 Fault Checking Sequence

The sequence by which the MMU checks for access faults is slightly different for Sections and Pages. The
figure below illustrates the sequence for both types of accesses. The sections and figures that follow describe
the conditions that generate each of the faults.

 Figure 42: Sequence for Checking Faults
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9.14.1 Alignment Fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an alignment fault on
any data word access the address of which is not word-aligned irrespective of whether the MMU is enabled
or not; in other words, if either of virtual address bits [1:0] are not 0. Alignment fault will not be generated
on any instruction fetch, nor on any byte access. Note that if the access generates an alignment fault, the
access sequence will abort without reference to further permission checks.

9.14.2 Translation Fault

There are two types of translation fault: section and page.

(1) A Section Translation Fault is generated if the Level One descriptor is marked as invalid. This
happens if bits[1:0] of the descriptor are both 0 or both 1.

(2) A Page Translation Fault is generated if the Page Table Entry is marked as invalid. This happens if
bits[1:0] of the entry are both 0 or both 1.

9.14.3 Domain Fault

There are two types of domain fault: section and page. In both cases the Level One descriptor holds the 4-
bit Domain field which selects one of the sixteen 2-bit domains in the Domain Access Control Register. The
two bits of the specified domain are then checked for access permissions as detailed in Table 10: Interpreting
Access Permission (AP) Bits. In the case of a section, the domain is checked once the Level One descriptor is
returned, and in the case of a page, the domain is checked once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section Domain Fault or Page
Domain Fault occurs.

9.14.4 Permission Fault

There are two types of permission fault: section and sub-page. Permission fault is checked at the same time
as Domain fault. If the 2-bit domain field returns client (01), then the permission access check is invoked as
follows:

section:

If the Level One descriptor defines a section-mapped access, then the AP bits of the descriptor
define whether or not the access is allowed according to Table 10: Interpreting Access Permission (AP)
Bits. Their interpretation is dependent upon the setting of the S bit (Control Register bit 8). If the
access is not allowed, then a Section Permission fault is generated.

sub-page:

If the Level One descriptor defines a page-mapped access, then the Level Two descriptor specifies
four access permission fields (ap3..ap0) each corresponding to one quarter of the page. Hence for
small pages, ap3 is selected by the top 1kB of the page, and ap0 is selected by the bottom 1kB of the
page; for large pages, ap3 is selected by the top 16kB of the page, and ap0 is selected by the bottom
16kB of the page. The selected AP bits are then interpreted in exactly the same way as for a section
(see Table 10: Interpreting Access Permission (AP) Bits), the only difference being that the fault
generated is a sub-page permission fault.
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9.15 External Aborts

In addition to the MMU-generated aborts, ARM710 has an external abort pin which may be used to flag an
error on an external memory access. However, not all accesses can be aborted in this way, so this pin must
be used with great care. The following section describes the restrictions.

The following accesses may be aborted and restarted safely. If any of the following are aborted the external
access will cease on the next cycle. In the case of a read-lock-write sequence in which the read aborts, the
write will not happen.

Reads

Unbuffered writes

Level One descriptor fetch

Level Two descriptor fetch

read-lock-write sequence

Cacheable reads (linefetches)
A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the linefetch then
the cache will be purged, so it will not contain invalid data. If the abort happens on a word that has been
requested by the ARM710, it will be aborted, otherwise the cache line will be purged but program flow will
not be interrupted. The line is therefore purged under all circumstances.

Buffered writes.
Buffered writes cannot be externally aborted. Therefore, the system should be configured such that it does
not do buffered writes to areas of memory which are capable of flagging an external abort.

9.16 Interaction of the MMU, IDC and Write Buffer

The MMU, IDC and WB may be enabled/disabled independently. However there are only five valid
combinations. There are no hardware interlocks on these restrictions, so invalid combinations will cause
undefined results.

The following procedures must be observed.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

Table 14: Valid MMU, IDC & Write Buffer Combinations
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 To enable the MMU:

(1) Program the Translation Table Base and Domain Access Control Registers
(2) Program Level 1 and Level 2 page tables as required
(3) Enable the MMU by setting bit 0 in the Control Register.

Note:

Care must be taken if the translated address differs from the untranslated address as the two instructions
following the enabling of the MMU will have been fetched using “flat translation” and enabling the MMU
may be considered as a branch with delayed execution. A similar situation occurs when the MMU
is disabled. Consider the following code sequence:

MOV R1, #0x1
MCR 15,0,R1,0,0 ; Enable MMU
Fetch Flat
Fetch Flat
Fetch Translated

To disable the MMU

(1) Disable the WB by clearing bit 3 in the Control Register.
(2) Disable the IDC by clearing bit 2 in the Control Register.
(3) Disable the MMU by clearing bit 0 in the Control Register.

Note:

If the MMU is enabled, then disabled and subsequently re-enabled the contents of the TLB will have been
preserved. If these are now invalid, the TLB should be flushed before re-enabling the MMU.

Disabling of all three functions may be done simultaneously.

9.17 Effect of Reset

See Section 3.5: Reset on page 18.
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10.0 Bus Interface

The ARM710 has two input clocks FCLK and MCLK. The bus interface is always controlled by MCLK. The
core CPU switches between the two clocks according to the operation being carried out. For example,  when
reading data from the cache, it is clocked by FCLK,whereas it is clocked by MCLK when reading data from
unached external memory. The ARM710 control logic ensures that the correct clock is used internally and
switches between the two clocks automatically. At all times FCLK must be greater than or equal to MCLK
in frequency.

The ARM710 bus interface has two distinct modes of operation: synchronous and asynchronous, which are
selected by tying SnA either HIGH or LOW. The two modes differ in the relationship between FCLK and
MCLK:

• in asynchronous mode (SnA LOW) the clocks may be completely asynchronous and of unrelated
frequency

• in synchronous mode(SnA HIGH) MCLK may only make transitions before the falling edge of
FCLK.

In systems where a satisfactory relationship exists between FCLK and MCLK, synchronization penalties
can be avoided by selecting the synchronous mode of operation.

10.1 Asynchronous Mode

In this mode FCLK and MCLK may be completely asynchronous. This mode should be selected, by tying
SnA LOW, when the two clocks are of unrelated frequency. There is a synchronisation penalty whenever
the internal core clock switches between the two input clocks. This penalty is symmetric, and varies
between nothing and a whole period of the clock to which the core is resynchronising. Thus when changing
from FCLK to MCLK the average resynchronisation penalty is half a MCLK period, and similarly when
changing from MCLK to FCLK it is half a FCLK period.

10.2 Synchronous Mode

In this mode, selected by tying SnA HIGH, there is a tightly defined relationship between FCLK and
MCLK. MCLK may only make transitions on the falling edge of FCLK. Some jitter between the two clocks
is permitted, but MCLK must not be later than FCLK. Refer to Section 12.2: DC Operating Conditions on page
117.

10.3 ARM710 Cycle Speed

The bus interface is controlled by MCLK, and all timing parameters are referenced with respect to this
clock. The speed of the memory may be controlled in one of two ways.

1) The LOW and HIGH phases of the clock may be stretched

2) nWAIT can be used to insert entire MCLK cycles into the access. When LOW, this signal maintains
the LOW phase of the cycle by gating out MCLK. nWAIT may only change when MCLK is LOW.
See Section 10.15:  Use of the nWAIT pin on page 102.
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10.4 Cycle Types

There are two basic cycle types performed by an ARM710. These are idle cycles and memory cycles. Idle
cycles and memory cycles are combined to perform memory accesses. The two cycle types are differentiated
by the signal nMREQ. (SEQ is the inverse of nMREQ, and is provided for backwards compatibility with
earlier memory controllers). nMREQ HIGH indicates an idle cycle, and nMREQ LOW indicates a memory
access. However, nMREQ is pipelined, and so its value determines what type the following cycle will be.
nMREQ becomes valid during the LOW phase of the cycle before the one to which it refers.

The address from ARM710 becomes valid during the HIGH phase of MCLK. It is also pipelined, and its
value refers to the following memory access.

10.5 Memory Access

There are two types of memory access. These are non-sequential and sequential. The non-sequential cycles
occur when a new memory access takes place. Sequential cycles occur when the cycle is of the same type
as, and the address of is 1 word (4 bytes) greater than, the previous access. So for example, a single word
access consists of a non-sequential access, and a two word access consists of a non-sequential access
followed by a sequential access.

Non-sequential accesses consist of an idle cycle followed by a memory cycle, and sequential accesses consist
simply of a memory cycle. In the case of a non-sequential access, the address is valid throughout the idle
cycle, allowing extra time for memory decoding.

10.6 Read/Write

Memory accesses may be read or write, differentiated by the signal nRW. This signal has the same timing
as the address, so is likewise pipelined, and refers to the following cycle. In the case of a write, the
ARM710 outputs data on the data bus during the memory cycle. It becomes valid during MCLK LOW, and
is held until the end of the cycle. In the case of a read, then data is sampled at the end of the memory cycle.
nRW may not change during a sequential access, so if a read from address A is followed immediately by a
write to address (A+4), then the write to address (A+4) would be a non-sequential access.

10.7 Byte/Word

Likewise, any memory access may be of a word or a byte quantity. These are differentiated by the signal
nBW, which also has the same timing as the address, ie it becomes valid in the HIGH phase of MCLK in
the cycle before the one to which it refers. nBW LOW indicates a byte access. Again, nBW may not change
during sequential accesses.

10.8 Maximum Sequential Length

As explained above, the ARM710 will perform sequential memory accesses whenever the cycle is of the
same type (ie byte/word, read/write) as the previous cycle, and the addresses are consecutive. However,
sequential accesses are interrupted on a 256 word boundary. This is to allow the MMU to check the
translation protection as the address crosses a sub-page boundary. If a sequential access is performed over
a 256 word boundary, the access to word 256 is simply turned into a non-sequential access, and then further
accesses continue sequentially as before.
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 Figure 43: One Word Read or Write

 Figure 44: Two Word Sequential Read or Write
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 Figure 45: Two Word Non-Sequential Unbuffered accesses

 Figure 46: Two Word Non-Sequential Buffered Writes
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10.9 Memory Access Types

ARM710 performs many different bus accesses, and all are constructed out of combinations of non-
sequential and sequential accesses. There may be any number of idle cycles between two other memory
accesses. If a memory access is followed by an idle period on the bus (as opposed to another non-sequential
access), then the address, and the signal nRW and nBW will remain at their previous value in order to avoid
unnecessary bus transitions.

The accesses performed by an ARM710 are:

Unbuffered Write Level 1 translation fetch

Uncached Read Level 2 translation fetch

Buffered Write Read-Lock-Write sequence

Linefetch

10.10 Unbuffered Writes / Uncacheable Reads

These are the most basic access types. Apart from the difference between read and write, they are the same.
Each may consist of a single (LDR/STR) or multiple (LDM/STM) access. A multiple access consists of a
non-sequential access followed by a sequential access. These cycles always reflect the type (ie read/write,
byte/word) of the instruction requesting the cycle.

10.11 Buffered Write

The external bus cycle of a buffered write is identical to and indistinguishable from the bus cycle of an
unbuffered write. These cycles always reflect the type (byte/word) of the instruction requesting the cycle.
Note that if several write accesses are stored concurrently within the write buffer, then each access on the
bus will start with a non-sequential access.

10.12 Linefetch

This access appears on the bus as a non-sequential access followed by seven sequential accesses. Note that
linefetch accesses always start on an 8-word boundary, and are always word accesses. So if the instruction
which caused the linefetch was a byte load instruction (eg LDRB), then the linefetch access will be a word
access on the bus. Figure 47: Linefetch shows the start of a linefetch.

 Figure 47: Linefetch
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A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the linefetch then
the cache will be purged, so it will not contain invalid data. If the abort happens on a word that has been
requested by the ARM710, it will be aborted, otherwise the cache line will be purged but program flow will
not be interrupted. The line is therefore purged under all circumstances.

10.13 Translation fetches

These accesses are required to obtain the translation data for an access. There are two types, Level 1 & Level
2. A Level 1 access is required for a section-mapped memory location, and a Level 2 access is required for
a page mapped memory location. A Level 2 access is always preceded by a Level 1 access. Note that these
translation fetches are often immediately followed by a data access. In fact the translation fetch held up the
data access because the translation was not contained in the Translation Lookaside Buffer (TLB).
Translation fetches are always read word accesses. So if a byte or write (or both) access was not possible
because the address was not contained in the TLB, then the access would be preceded by the translation
fetch(es) which would always be word read accesses.

 Figure 48: Translation Table-walking Sequence (write) For Page

 Figure 49: Translation Table-walking Sequence (write) For Section
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10.14 Read - lock -write

The read-lock-write sequence is generated by a SWP instruction. On the bus it consists of a read access
followed by a write access to the same address, and both are treated as non-sequential accesses. The cycle
is differentiated by the LOCK signal. LOCK has the timing of address, ie it goes HIGH in the HIGH phase
of MCLK at the start of the read access. However, it always goes LOW at the end of the write access.

The read cycle will always be performed as a single non-sequential external read cycle, regardless of the
contents of the cache. The write will be forced to be unbuffered, so that it can be aborted if necessary. The
cache will be updated on the write.

 Figure 50: Read - Locked - Write

 Figure 51: Use of nWAIT pin to stop ARM710 for 1 MCLK cycle
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10.15 Use of the nWAIT pin

The nWAIT pin can be used to stretch memory accesses in whole cycle increments. nWAIT may only
change during the LOW phase of MCLK and when low gates out MCLK high phases. nWAIT will not
prevent changes in nMREQ, SEQ and a Write on D[31:0] during the phase in which it was taken LOW.
Changes in these signals will then be prevented until the MCLK HIGH phase after nWAIT was raised. All
other outputs cannot change from the time nWAIT goes LOW until the next MCLK HIGH phase after
nWAIT returns HIGH. If ALE is being used to latch an address when nWAIT is taken LOW, the address
and control signals will changes when ALE returns HIGH regardless of the state of nWAIT. See Figure 51:
Use of nWAIT pin to stop ARM710 for 1 MCLK cycle.
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10.16 ARM710 Cycle Type Summary

Operation nRW A[31:0] nMREQ D[31:0]

Idle old old i

Linefetch r a i
r a m
r a+4 m d
r a+8 m d
r a+12 m d
r a+16 m d
r a+20 m d
r a+24 m d
r a+28 m d
r a+28 i d

 Start r/w a i
r/w a m

d
Uncacheable Read /

Unbuffered Write Repeat r/w a+n m
d

End r/w old i

Start w a i
w a m

Buffered Write d

Repeat w a+n m
d

Read phase r aL i
r aL m
r aL i d
r aL i

Write phase w aL i
- Unbuffered w aL m

Read-Lock-Write w aL i d

Write phase r aL i
- Aborted r aL i

r aL i

Table 15: Cycle Type Summary
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Key to Cycle Type Summary:

r - Read (nRW LOW)

r/w - applies equally to Read and Write

w - Write (nRW HIGH)

old - signal remains at previous value

a - first Address

a+n - next sequential address

aL - Read-Lock-Write Address

i - Idle cycle (nMREQ HIGH)

m - Memory cycle (nMREQ LOW)

d - valid data on data bus

Each line in Table 15: Cycle Type Summary shows the state of the bus interface during a single MCLK cycle.
It illustrates the pipelining of nMREQ and the address. Each Operation Type section shows the sequence
of cycles which make up that type of access, with each line down the diagram showing successive clock
cycles.

The Uncached Read / Unbuffered Write is shown in three sections. The start and end are always present,
with the Repeat section repeated as many times as required when a multiple access is being performed.

Buffered Writes are also of variable length and consist of the Start section plus as many consecutive Repeat
sections as are necessary.

A swap instruction consists of the Read phase, followed by one of the two possible Write phases.

Activity on the memory interface is the succession of these access sequences.
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11.0 Boundary Scan Test Interface

The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test Access Port and
Boundary-Scan Architecture (please refer to this standard for an explanation of the terms used in this
section and for a description of the TAP controller states.)

11.1 Overview

The boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit
board, and a means of driving and sampling all the external pins of the device irrespective of the core state.
This latter function permits testing of both the device's electrical connections to the circuit board, and (in
conjunction with other devices on the circuit board having a similar interface) testing the integrity of the
circuit board connections between devices. The interface intercepts all external connections within the
device, and each such “cell” is then connected together to form a serial register (the boundary scan register).
The whole interface is controlled via 5 dedicated pins: TDI, TMS, TCK, nTRST and TDO. Figure 52: Test
Access Port (TAP) Controller Sate Transitions shows the state transitions that occur in the TAP controller.

 Figure 52: Test Access Port (TAP) Controller Sate Transitions
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11.2 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller). In order to force the
TAP controller into the correct state after power-up of the device, a reset pulse must be applied to the
nTRST pin. If the boundary scan interface is to be used, then nTRST must be driven LOW, and then HIGH
again. If the boundary scan interface is not to be used, then the nTRST pin may be tied permanently LOW.
Note that a clock on TCK is not necessary to reset the device.

The action of reset (either a pulse or a DC level) is as follows:

System mode is selected (i.e. the boundary scan chain does not intercept any of the signals passing
between the pads and the core).

IDcode mode is selected. If TCK is pulsed, the contents of the ID register will be clocked out of
TDO.

11.3 Pullup Resistors

The IEEE 1149.1 standard effectively requires that TDI, nTRST and TMS should have internal pullup
resistors. In order to minimise static current draw, these resistors are not fitted to ARM710. Accordingly,
the 4 inputs to the test interface (the above 3 signals plus TCK) must all be driven to good logic levels to
achieve normal circuit operation.

11.4 Instruction Register

The instruction register is 4 bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the CAPTURE-IR
controller state is:    0001.

11.5 Public Instructions

The following public instructions are supported:

Instruction Binary Code

EXTEST 0000
SAMPLE/PRELOAD 0011
CLAMP 0101
HIGHZ 0111
CLAMPZ 1001
INTEST 1100
IDCODE 1110
BYPASS 1111

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK and all output
transitions on TDO occur as a result of the falling edge of TCK.
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11.5.1 EXTEST (0000)

The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the EXTEST instruction, all the boundary-scan cells are placed
in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the boundary-scan output cells
to the system pins are captured by the boundary-scan cells. In the SHIFT-DR state, the previously captured
test data is shifted out of the BS register via the TDO pin, whilst new test data is shifted in via the TDI pin
to the BS register parallel input latch. In the UPDATE-DR state, the new test data is transferred into the BS
register parallel output latch. Note that this data is applied immediately to the system logic and system
pins. The first EXTEST vector should be clocked into the boundary-scan register, using the SAMPLE/
PRELOAD instruction, prior to selecting INTEST to ensure that known data is applied to the system logic.

11.5.2 SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in normal (system) mode by the SAMPLE/PRELOAD
instruction.

The SAMPLE/PRELOAD instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the boundary-scan
cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is taken on the rising edge
of TCK. Normal system operation is unaffected. In the SHIFT-DR state, the sampled test data is shifted out
of the BS register via the TDO pin, whilst new data is shifted in via the TDI pin to preload the BS register
parallel input latch. In the UPDATE-DR state, the preloaded data is transferred into the BS register parallel
output latch. Note that this data is not applied to the system logic or system pins while the SAMPLE/
PRELOAD instruction is active. This instruction should be used to preload the boundary-scan register with
known data prior to selecting the INTEST or EXTEST instructions (see the table below for appropriate
guard values to be used for each boundary-scan cell).

11.5.3 CLAMP (0101)

The CLAMP instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the CLAMP instruction is loaded into the instruction register, the state of all output signals is defined
by the values previously loaded into the boundary-scan register. A guarding pattern (specified for this
device at the end of this section) should be pre-loaded into the boundary-scan register using the SAMPLE/
PRELOAD instruction prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.
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11.5.4 HIGHZ (0111)

The HIGHZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the HIGHZ instruction is loaded into the instruction register, all outputs are placed in an inactive
drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

11.5.5 CLAMPZ (1001)

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive
drive state, but the data supplied to the disabled output drivers is derived from the boundary-scan cells.
The purpose of this instruction is to ensure, during production testing, that each output driver can be
disabled when its data input is either a 0 or a 1.

A guarding pattern (specified for this device at the end of this section) should be pre-loaded into the
boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMPZ
instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.

11.5.6 INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction.

The INTEST instruction connects the BS register between TDI and TDO.

When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed
in their test mode of operation.

In the CAPTURE-DR state, the complement of the data supplied to the core logic from input boundary-scan
cells is captured, while the true value of the data that is output from the core logic to output boundary- scan
cells is captured. Note that CAPTURE-DR captures the complemented value of the input cells for testability
reasons.

In the SHIFT-DR state, the previously captured test data is shifted out of the BS register via the TDO pin,
whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR
state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied
immediately to the system logic and system pins. The first INTEST vector should be clocked into the
boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure
that known data is applied to the system logic.

Single-step operation is possible using the INTEST instruction.
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11.5.7 IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register) between TDI and TDO.
The ID register is a 32-bit register that allows the manufacturer, part number and version of a component
to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed
in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified at the end of this section) is captured
by the ID register. In the SHIFT-DR state, the previously captured device identification code is shifted out
of the ID register via the TDO pin, whilst data is shifted in via the TDI pin into the ID register. In the
UPDATE-DR state, the ID register is unaffected.

11.5.8 BYPASS (1111)

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between TDI and TDO.

When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed
in their normal (system) mode of operation. This instruction has no effect on the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-DR state, test data is
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state.
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11.6 Test Data Registers

Figure 53: Boundary Scan Block Diagram illustrates the structure of the boundary scan logic.

 Figure 53: Boundary Scan Block Diagram

11.6.1 Bypass Register

Purpose: This is a single bit register which can be selected as the path between TDI and TDO to allow the
device to be bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the BYPASS instruction is the current instruction in the instruction register, serial
data is transferred from TDI to TDO in the SHIFT-DR state with a delay of one TCK cycle.
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There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR state.

11.6.2 ARM710 Device Identification (ID) Code Register

Purpose: This register is used to read the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length: 32 bits

The format of the ID register is as follows:

Please contact your supplier for the correct Device Identification Code.

Operating Mode: When the IDCODE instruction is current, the ID register is selected as the serial path
between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel inputs during the
CAPTURE-DR state.

11.6.3 ARM710 Boundary Scan (BS) Register

Purpose: The BS register consists of a serially connected set of cells around the periphery of the device, at
the interface between the core logic and the system input/output pads. This register can be used to isolate
the core logic from the pins and then apply tests to the core logic, or conversely to isolate the pins from the
core logic and then drive or monitor the system pins.

Operating modes: The BS register is selected as the register to be connected between TDI and TDO only
during the SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but
are not changed, during the CLAMP and CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the core logic and pins are
maintained and normal system operation is unaffected.

In TEST mode (ie when either EXTEST or INTEST is the currently selected instruction), values can be
applied to the core logic or output pins independently of the actual values on the input pins and core logic
outputs respectively. On the ARM710 all of the boundary scan cells include an update register and thus all
of the pins can be controlled in the above manner. Additional boundary-scan cells are interposed in the scan
chain in order to control the enabling of tristateable buses.

011112272831

1Manufacturer IdentityPart NumberVersion
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The correspondence between boundary-scan cells and system pins, system direction controls and system
output enables is as shown in Table 17: Boundary Scan Signals & Pins. The cells are listed in the order in which
they are connected in the boundary-scan register, starting with the cell closest to TDI. All boundary-scan
register cells at input pins can apply tests to the on-chip core logic.

The EXTEST guard values specified in Table 17: Boundary Scan Signals & Pins should be clocked into the
boundary-scan register (using the SAMPLE/PRELOAD instruction) before the EXTEST instruction is
selected, to ensure that known data is applied to the core logic during the test. The INTEST guard values
shown in the table below should be clocked into the boundary-scan register (using the SAMPLE/
PRELOAD instruction) before the INTEST instruction is selected to ensure that all outputs are disabled.
These guard values should also be used when new EXTEST or INTEST vectors are clocked into the
boundary-scan register.

The values stored in the BS register after power-up are not defined. Similarly, the values previously clocked
into the BS register are not guaranteed to be maintained across a Boundary Scan reset (from forcing nTRST
LOW or entering the Test Logic Reset state).

11.6.4 Output Enable Boundary-scan Cells

The boundary-scan register cells Nendout, Nabe, Ntbe, and Nmse control the output drivers of tristate
outputs as shown in the table below. In the case of OUTEN0 enable cells (Nendout, Ntbe), loading a 1 into
the cell will place the associated drivers into the tristate state, while in the case of type INEN1 enable cells
(Nabe, Nmse), loading a 0 into the cell will tristate the associated drivers.

To put all ARM710 tristate outputs into their high impedance state, a logic 1 should be clocked into the
output enable boundary-scan cells Nendout and Ntbe, and a logic 0 should be clocked into Nabe and Nmse.
Alternatively, the HIGHZ instruction can be used.

For example, if the on-chip core logic causes the drivers controlled by Nendout to be tristate, (ie by driving
the signal nENDOUT HIGH), then a 1 will be observed on this cell if the SAMPLE/PRELOAD or INTEST
instructions are active.

11.6.5 Single-step Operation

ARM710 is a static design and there is no minimum clock speed. It can therefore be single-stepped while
the INTEST instruction is selected. This can be achieved by serialising a parallel stimulus and clocking the
resulting serial vectors into the boundary-scan register. When the boundary-scan register is updated, new
test stimuli are applied to the core logic inputs; the effect of these stimuli can then be observed on the core
logic outputs by capturing them in the boundary-scan register.
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11.7 Boundary Scan Interface Signals

 Figure 54: Boundary Scan General Timing

 Figure 55: Boundary Scan Tri-state Timing

 Figure 56: Boundary Scan Reset Timing
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Notes:

1. Assumes a 25pF load on TDO. Output timing derates at 0.072ns/pF of extra load applied.

2. TDO enable time applies when the TAP controller enters the Shift-DR or Shift-IR states.

3. TDO disable time applies when the TAP controller leaves the Shift-DR or Shift-IR states.

4. For correct data latching, the I/O signals (from the core and the pads) must be setup and held with
respect to the rising edge of TCK in the CAPTURE-DR state of the SAMPLE/PRELOAD, INTEST
and EXTEST instructions.

5. Assumes that the data outputs are loaded with the AC test loads (see AC parameter specification).

6. Data output enable time applies when the boundary scan logic is used to enable the output drivers.

7. Data output disable time applies when the boundary scan is used to disable the output drivers.

8. TMS must be held high as nTRST is taken high at the end of the boundary-scan reset sequence.
9. TCK may be stopped indefinitely in either the low or high phase.

Symbol Parameter Min Typ Max Units Notes

Tbscl TCK low period 50 ns 9

Tbsch TCK high period 50 ns 9

Tbsis TDI,TMS setup to [TCr] 10 ns

Tbsih TDI,TMS hold from [TCr] 10 ns

Tbsoh TDO hold time 5 ns 1

Tbsod TCf to TDO valid 40 ns 1

Tbsss I/O signal setup to [TCr] 5 ns 4

Tbssh I/O signal hold from [TCr] 20 ns 4

Tbsdh data output hold time 5 ns 5

Tbsdd TCf to data output valid 40 ns

Tbsoe TDO enable time 5 ns 1,2

Tbsoz TDO disable time 40 ns 1,3

Tbsde data output enable time 5 ns 5,6

Tbsdz data output disable time 40 ns 5,7

Tbsr Reset period 30 ns

Tbsrs tms setup to [TRr] 10 ns  9

Tbsrh tms hold from [TRr] 10 ns  9

Table 16: ARM710 Boundary Scan Interface Timing
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No.
                                                                  Output enable
  Cell Name             Pin                Type           BS Cell

Guard
Value

IN     EX *
No.

                                                                  Output enable
  Cell Name             Pin                Type           BS Cell

Guard
Value

IN     EX *

from tdi 46 din20 D[20] IN -

1 a12 A[12] OUT Nabe 47 dout20 D[20] OUT Nendout

2 a11 A[11] OUT Nabe 48 din19 D[19] IN -

3 a10 A[10] OUT Nabe 49 dout19 D[19] OUT Nendout

4 a09 A[09] OUT Nabe 50 din18 D[18] IN -

5 a08 A[08] OUT Nabe 51 dout18 D[18] OUT Nendout

6 a07 A[07] OUT Nabe 52 din17 D[17] IN -

7 a06 A[06] OUT Nabe 53 dout17 D[17] OUT Nendout

8 a05 A[05] OUT Nabe 54 din16 D[16] IN -

9 a04 A[04] OUT Nabe 55 dout16 D[16] OUT Nendout

10 a03 A[03] OUT Nabe 56 din15 D[15] IN -

11 a02 A[02] OUT Nabe 57 dout15 D[15] OUT Nendout

12 a01 A[01] OUT Nabe 58 din14 D[14] IN -

13 a00 A[00] OUT Nabe 59 dout14 D[14] OUT Nendout

14 Nabe ABE INEN1 -  0 60 din13 D[13] IN -

15 rlw LOCK OUT Nabe 61 dout13 D[13] OUT Nendout

16 Nbw nBW OUT Nabe 62 din12 D[12] IN -

17 Nrw nRW OUT Nabe 63 dout12 D[12] OUT Nendout

18 testbus[7] TESTIN[15] IN -  0 64 din11 D[11] IN -

19 testbus[6] TESTIN[14] IN -  0 65 dout11 D[11] OUT Nendout

20 testbus[5] TESTIN[13] IN -  0 66 din10 D[10] IN -

21 testbus[3] TESTIN[11] IN -  0 67 dout10 D[10] OUT Nendout

22 testbus[2] TESTIN[10] IN -  0 68 din9 D[9] IN -

23 testbus[1] TESTIN[9] IN -  0 69 dout9 D[9] OUT Nendout

24 testbus[0] TESTIN[8] IN -  0 70 Nendout - OUTEN0 -  1

25 din31 D[31] IN - 71 din8 D[8] IN -

26 dout31 D[31] OUT Nendout 72 dout8 D[8] OUT Nendout

27 din30 D[30] IN - 73 din7 D[7] IN -

28 dout30 D[30] OUT Nendout 74 dout7 D[7] OUT Nendout

29 din29 D[29] IN - 75 din6 D[6] IN -

30 dout29 D[29] OUT Nendout 76 dout6 D[6] OUT Nendout

31 din28 D[28] IN - 77 din5 D[5] IN -

32 dout28 D[28] OUT Nendout 78 dout5 D[5] OUT Nendout

33 din27 D[27] IN - 79 din4 D[4] IN -

34 dout27 D[27] OUT Nendout 80 dout4 D[4] OUT Nendout

34 din26 D[26] IN - 81 din3 D[3} IN -

35 dout26 D[26] OUT Nendout 82 dout3 D[3] OUT Nendout

36 din25 D[25] IN - 83 din2 D[2] IN -

37 dout25 D[25] OUT Nendout 84 dout2 D[2] OUT Nendout

38 din24 D[24] IN - 85 din1 D[1] IN -

39 dout24 D[24] OUT Nendout 86 dout1 D[1] OUT Nendout

40 din23 D[23] IN - 87 din0 D[0] IN -

41 dout23 D[23] OUT Nendout 88 dout0 D[0] OUT Nendout

42 din22 D[22] IN - 89 dbe DBE IN -

43 dout22 D[22] OUT Nendout 90 seq SEQ OUT Nmse

44 din21 D[21] IN - 91 Nmreq nMREQ OUT Nmse

45 dout21 D[21] OUT Nendout 92 Nmse MSE INEN1 -  0

Table 17: Boundary Scan Signals & Pins
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Key: IN Input pad
OUT Output pad
INEN1 Input enable active high
OUTENO Output enable active low
* for Intest Extest/Clamp

93 sNa SnA IN - 115 a23 A[23] OUT Nabe

94 Nwait nWAIT IN - 116 a22 A[22] OUT Nabe

95 mclk MCLK IN -  0 117 a21 A[21] OUT Nabe

96 fclk FCLK IN -  0 118 a20 A[20] OUT Nabe

97 abort ABORT IN - 119 a19 A[19] OUT Nabe

98 Nreset nRESET IN - 120 a18 A[18] OUT Nabe

99 testin[16] TESTIN[16] IN -  0 121 a17 A[17] OUT Nabe

100 testout[2] TESTOUT[2] OUT Ntbe 122 a16 A[16] OUT Nabe

101 testout[1] TESTOUT[1] OUT Ntbe 123 a15 A[15] OUT Nabe

102 testout[0] TESTOUT[0] OUT Ntbe 124 a14 A[14] OUT Nabe

103 Nirq nIRQ IN - 125 a13 A[13] OUT Nabe

104 Nfiq nFIQ IN - 126 a12 A[12] OUT Nabe

105 Ntbe - OUTEN0 -  1 127 a11 A[11] OUT Nabe

106 ale ALE IN - 128 a10 A[10] OUT Nabe

107 a31 A[31] OUT Nabe 129 a09 A[09] OUT Nabe

108 a30 A[30] OUT Nabe 130 a08 A[08] OUT Nabe

109 a29 A[29] OUT Nabe 131 a07 A[07] OUT Nabe

110 a28 A[28] OUT Nabe 132 a06 A[06] OUT Nabe

111 a27 A[27] OUT Nabe 133 a05 A[05] OUT Nabe

112 a26 A[26] OUT Nabe 134 a14 A[14] OUT Nabe

113 a25 A[25] OUT Nabe 135 a13 A[13] OUT Nabe

114 a24 A[24] OUT Nabe to TDO

No.
                                                                  Output enable
  Cell Name             Pin                Type           BS Cell

Guard
Value

IN     EX *
No.

                                                                  Output enable
  Cell Name             Pin                Type           BS Cell

Guard
Value

IN     EX *

Table 17: Boundary Scan Signals & Pins
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12.0 DC Parameters

*** Subject to Change ***

12.1 Absolute Maximum Ratings

Note:

These are stress ratings only. Exceeding the absolute maximum ratings may permanently damage the
device. Operating the device at absolute maximum ratings for extended periods may affect device
reliability.

12.2 DC Operating Conditions

Notes:

(1) Voltages measured with respect to VSS.

(2) IC - CMOS inputs (includes IC and ICOCZ pin types)

(3) OCZ - Output, CMOS levels, tri-stateable

Symbol Parameter 5V
Min

5V
Max  Units Note

VDD Supply voltage VSS-0.3 VSS+7.0 V 1

Vip Voltage applied to any pin VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg C 1

Table 18: ARM710 DC Maximum Ratings

Symbol Parameter Min Typ Max Units Notes

VDD Supply voltage 2.7 3.0 - 5.0 5.5 V

Vihc IC input HIGH voltage .8xVDD VDD V 1,2

Vilc IC input LOW voltage 0.0 0.2xVDD V 1,2

Vohc OCZ output HIGH voltage 0.9xVDD VDD V 1,2

Volc OCZ output LOW voltage 0.0 0.1xVDD V 1,2

Ta Ambient operating temperature 0 70 ¡C

Table 19: ARM710 DC Operating Conditions
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12.3 DC Characteristics

Notes:

(1) Nominal values shown are derived from transient analysis simulations.

(2) ESD - 2 KV minimum

Symbol Parameter Nom Units Note

IDD Static Supply current 20 µA

Isc Output short circuit current 100 mA

Ilu DC latch-up current >500 mA

Iin IC input leakage current 1 uA

Ioh Output HIGH current (Vout = VDD-0.4V) mA

Iol Output LOW current (Vout = VSS+0.4V) mA

Cin Input capacitance pF

ESD HMB model ESD 4 KV 2

Table 20: ARM710 DC Characteristics
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13.0 AC Parameters

* * * Subject to change * * *

13.1 Test Conditions

The AC timing diagrams presented in this section assume that the outputs of ARM710 have been loaded
with the capacitive loads shown in the `Test Load' column of the table below; these loads have been chosen
as typical of the system in which ARM710 might be employed. The output pads of ARM710 are CMOS
drivers which exhibit a propagation delay that increases linearly with the increase in load capacitance. An
`Output derating' figure is given for each output pad, showing the approximate rate of increase of output
time with increasing load capacitance.

13.2 Relationship between FCLK & MCLK in Synchronous Mode

 Figure 57: Clock Timing Relationship

Output Signal Test Load (pF) Output Derating (ns/pF)

A[31:0] 50 0.072

D[31:0] 50 0.072

nR/W 50 0.072

nB/W 50 0.072

LOCK 50 0.072

nMREQ 50 0.072

SEQ 50 0.072

Table 21: ARM710 AC Test Conditions

Tfckl Tfckh

FCLK

MCLK

Tfmh

Twh
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NB: FLCK frequency must be strictly greater than or equal to MCLK at all times.

Notes:

(1) FCLK timings measured at 50% of Vdd. This applies to both synchronous and asynchronous
operation.

13.2.1 Tald Measurement

Tald is the maximum delay allowed in the ALE input transition to guarantee the address will not change:

 Figure 58: Tald Measurement

Symbol Parameter
5V

Min
5V

Max
3V

Min
3V

Max
Unit Note

Tfckl       FCLK LOW time 15 20 ns 1

Tfckh       FCLK HIGH time 15 20 ns 1

Tfmh       FCLK - MCLK hold time  20 25 ns

Tmfs       MCLK - FCLK setup 3 4 ns

Table 22: ARM710 FCLK and MCLK Synchronous Mode relationship

MCLK

ALE

A[31:0]

Tald
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13.3 Main Bus Signals

 Figure 59: ARM710 Main Bus Timing

 Figure 60: ARM710 Bus Enable Timing
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 Figure 61: ARM710 nWAIT Timing

Symbol Parameter
5V

Min
5V

Max
3V

Min
3V

Max
Unit Note

Tmckl MCLK LOW time 25 40 ns 1

Tmckh MCLK HIGH time 25 40 ns

Tws nWAIT setup to MCLK 5 ns

Twh nWAIT hold from MCLK 5 ns

Tale address latch enable 2 ns 3

Tald address latch disable

Tabe address bus enable 15 ns 2

Tabz address bus disable 25 ns

Taddr MCLK to address delay 25 ns 2

Tah address hold time 5 ns 2

Tah address hold time 5 ns 2

Tdbe DBE to data enable 15 ns 2

Tde MCLK to data enable 8 ns 2

Tdbz DBE to data disable 25 ns

Table 23: ARM710 Bus timing

MCLK
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Notes:

(1) MCLK timings measured between clock edges at 50% of Vdd.

(2) The timings of these buses are measured to TTL levels.

(3) See 13.2.1 Tald Measurement.

Tdz MCLK to data disable 25 ns

Tdout data out delay 32 ns 2

Tdoh data out hold 5 ns 2

Tdis data in setup 2 ns

Tdih data in hold 10 ns

Tabts ABORT setup time 10 ns

Tabth ABORT hold time 5 ns

Tmse nMREQ & SEQ enable 10 ns

Tmsz nMREQ & SEQ disable 20 ns

Tmsd nMREQ & SEQ delay 35 ns

Tmsh nMREQ & SEQ hold 5 ns

Symbol Parameter
5V

Min
5V

Max
3V

Min
3V

Max
Unit Note

Table 23: ARM710 Bus timing
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14.0 Physical Details

 Figure 62: ARM710 144 Pin TQFP Mechanical Dimensions in mm
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15.0 Pinout

Pin Signal Type Pin Signal Type Pin Signal Type Pin Signal Type

1 MSE i 37 D[24] i/o 73 LOCK o 109 A[26] o

2 nMREQ o 38 D[25] i/o 74 ABE i 110 A[27] o

3 SEQ o 39 D[26] i/o 75 A[ 0] o 111 A[28] o

4 DBE i 40 Vss1 - 76 A[ 1] o 112 Vdd2 -

5 Vss2 - 41 Vss2 - 77 A[ 2] o 133 Vss2 -

6 Vdd2 - 42 Vdd2 - 78 Vss2 - 114 A[29] o

7 D[ 0] i/o 43 D[27] i/o 79 Vdd2 - 115 A[30] o

8 D[ 1] i/o 44 D[28] i/o 80 A[ 3] o 116 A[31] o

9 D[ 2] i/o 45 D[29] i/o 81 A[ 4] o 117 ALE i

10 D[ 3] i/o 46 D[30] i/o 82 A[ 5] o 118 n/c

11 D[ 4] i/o 47 D[31] i/o 83 A[ 6] o 119 n/c

12 D[ 5] i/o 48 TDO o 84 A[ 7] o 120 n/c

13 D[ 6] i/o 49 TDI i 85 A[ 8] o 121 Vss1 -

14 D[ 7] i/o 50 nTRST i 86 A[ 9] o 122 Vdd1 -

15 D[ 8] i/o 51 Vdd1 - 87 A[10] o 123 TESTIN[ 7] i

16 Vss2 - 52 TMS i 88 A[11] o 124 TESTIN[ 6] i

17 Vdd2 - 53 TCK i 89 A[12] o 125 TESTIN[ 5] i

18 Vss1 - 54 n/c - 90 Vdd2 - 126 TESTIN[ 4] i

19 Vdd1 - 55 n/c - 91 Vss1 - 127 TESTIN[ 3] i

20 D[ 9] i/o 56 n/c - 92 Vdd1 - 128 TESTIN[ 2] i

21 D[10] i/o 57 n/c - 93 Vss2 - 129 TESTIN[ 1] i

22 D[11] i/o 58 n/c - 94 A[13] o 130 TESTIN[ 0] i

23 D[12] i/o 59 TESTIN[ 8] i 95 A[14] o 131 nFIQ

24 D[13] i/o 60 TESTIN[ 9] i 96 A[15] o 132 nIRQ

25 D[14] i/o 61 Vdd1 - 97 A[16] o 133 TESTOUT[0] o

26 D[15] i/o 62 Vss1 - 98 A[17] o 134 TESTOUT[1] o

27 D[16] i/o 63 TESTIN[10] i 99 A[18] o 135 TESTOUT[2] o

28 D[17] i/o 64 TESTIN[11] i 100 A[19] 136 TESTIN[16] i

29 D[18] i/o 65 TESTIN[12] i 101 A[20] o 137 nRESET i

30 D[19] i/o 66 TESTIN[13] i 102 Vdd2 - 138 ABORT i

31 Vdd2 - 67 TESTIN[14] i 103 Vss2 - 139 FCLK i

32 Vss2 - 68 TESTIN[15] i 104 A[21] o 140 MCLK i

33 D[20] i/o 69 Vss2 - 105 A[22] o 141 Vdd2 -

34 D[21] i/o 70 Vdd2 - 106 A[23] o 142 Vss2 -

35 D[22] i/o 71 nR/W o 107 A[24] o 143 nWAIT i

36 D[23] i/o 72 nB/W o 108 A[25] o 144 SnA i

Table 24: Pinout - ARM710 in 144 pin Thin Quad Flat Pack
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16.0 Appendix - Backward Compatibility

Two of the Control Register bits, prog32 and data32, allow one of three processor configurations to be
selected as follows:

(1) 26 bit program and data space - (prog32 LOW, data32 LOW). This configuration forces ARM710 to
operate like the earlier ARM processors with 26 bit address space. The programmer's model for
these processors applies, but the new instructions to access the CPSR and SPSR registers operate as
detailed elsewhere in this document. In this configuration it is impossible to select a 32 bit operating
mode, and all exceptions (including address exceptions) enter the exception handler in the
appropriate 26 bit mode.

(2) 26 bit program space and 32 bit data space - (prog32 LOW, data32 HIGH). This is the same as the
26 bit program and data space configuration, but with address exceptions disabled to allow data
transfer operations to access the full 32 bit address space.

(3) 32 bit program and data space - (prog32 HIGH, data32 HIGH). This configuration extends the
address space to 32 bits, introduces major changes in the programmer's model as described below
and provides support for running existing 26 bit programs in the 32 bit environment.

The fourth processor configuration which is possible (26 bit data space and 32 bit program space) should
not be selected.

When configured for 26 bit program space, ARM710 is limited to operating in one of four modes known as
the 26 bit modes. These modes correspond to the modes of the earlier ARM processors and are known as:

User26

FIQ26

IRQ26 and

Supervisor26.

These are the normal operating modes in this configuration and the 26 bit modes are only provided for
backwards compatibility to allow execution of programs originally written for earlier ARM processors.

The differences between ARM710 and the earlier ARM processors are documented in an ARM Application
Note 11 - “Differences between ARM6 and earlier ARM Processors”
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